

State of Hawaii, Department of Health, Clean Water Branch

NPDES Form G

Application for HAR, Chapter 11-55 - NPDES Individual Permit Authorizing Discharges Associated with Construction Activity Dewatering

All sections of this form MUST be completed for National Pollutant Discharge Elimination System (NPDES) Permit compliance.

G.1 – General Information

You are required to fulfill all requirements and <u>check the box</u> below. If you do not check the box, your application will be considered incomplete, and the CWB may deny your request for NPDES permit coverage with prejudice.

 \boxtimes *I certify that:*

- I will design, implement, operate, and maintain a Site-Specific Dewatering Plan to ensure that my discharges associated with construction activity dewatering will not violate HAR, Chapter 11-54; HAR, Chapter 11-55; and HAR, Chapter 11-55, Appendix G.
- My Site-Specific Dewatering Plan shall adequately address the minimum items in Attachment D of this form and contain appropriate measures to address Section 303(d) pollutants of concern for my receiving State water.
- Prior to any discharge of dewatering effluent, I will provide treatment to remove all pollutants of concern identified in Sections G.6, G.7, G.8, and G.9.

G.2 – Dewatering Discharge Information

- *c. Check the appropriate box(es) to indicate the frequency of discharge (how often discharge into the receiving State water will occur):*
 - Continuous. "Continuous discharge" means a discharge which occurs without interruption throughout the operating hours of the facility, except for infrequent shut-downs for maintenance, process changes, or other similar activities.
 - \square Emergency.
 - \square Daily.
 - *Intermittent.* "Intermittent discharge" means a discharge that is not continuous.

G.3 –Maps

Attach, title, and identify all maps (pdf - minimum 300 dpi) listed below, in Attachment A. Please reference which maps account for the features listed below.

- a. Island on which the activity is located. <u>O'ahu. See Attachment A, Figure 1, Project</u> Location.
- b. Location(s) of the proposed dewatering activity. See Attachment A, Figure 1, Project Location; Attachment A, Figure 2, Site Layout Plan; and Attachment B, Construction Drawings, C-18.
- *c.* Topographic map or maps which clearly show the legal boundaries of the activity; location of all existing and/or proposed outfalls or discharge points; and receiving State water(s) and receiving storm water drainage system(s), if applicable, identified and labeled.

See Attachment B, Construction Drawings.

- *d*. Location(s) where the water quality sample was collected in relation to the proposed dewatering activity. See Attachment C, Source Water Quality Assessment, Figure 2 and Attachment A, Figure 2, Site Layout Plan.
- e. Plan and profile of the proposed excavation. Attachment B, Construction Drawings.

G.4 – Flow Chart or Line Drawing

Attach or insert in Attachment A, a flow chart showing the following (Check each item, as applicable):

See Attachment A, Figure 3, Dewatering Flow Chart.

- \boxtimes a. General route taken by dewatering effluent through the project or activity from intake to the discharge point
- ⊠ b. Source water (e.g. ground water, seepage, storm water, etc.) from areas to be dewatered
- \boxtimes c. Treatment systems that will be utilized
- \boxtimes *d.* Estimated quantity of flow through each applicable route from upslope to the receiving State water
- ☐ e. Drainage system(s) receiving dewatering effluent, as applicable (e.g., City and County of Honolulu Municipal Separate Storm Sewer System (MS4), etc.)
- \boxtimes f. State water name(s) receiving dewatering effluent

Indicate which item(s) are not identified and explain why the item(s) are not identified No drainage system will receive dewatering effluent

G.5 - Existing or Pending Permits, Licenses, or Approvals

Place a check next to all applicable Federal, State, or County permits, Licenses, or approvals for the project and specify the permit number.

Ø Other NPDES Permit or NGPC File No.: <u>NPDES Forms C (Construction Storm Water) and</u> NPDES Forms F (Hydrotesting Activities)

Department of the Army Permit (Section 404): POH-2005-00342 (April 4, 2019)

If your project requires work in, above, under or adjacent to State waters, please contact the Army Corps of Engineers (COE) Regulatory Branch at (808) 438-9258 regarding their permitting requirements. Provide a copy of the COE permitting jurisdictional determination (JD) or the JD with COE Person's Name, Phone Number, and Date Contacted.

□ Facility on SARA 313 List (identify SARA 313 chemicals on project site: _

RCRA Permit (Hazardous Wastes): _____

☐ Section 401 Water Quality Certification: <u>The project is exempted from obtaining a Section</u> 401 Water Quality Certification (WQC), as provided by Senate Bill 1016 SD1 HD1 (expires June 30, 2022).

 Ø Other (Specify): Special Management Permit (Resolution 278-CD1); U. S. Coast Guard Clearance (obtained); Section 106, National Historic Preservation Act, Consultation (completed); Section 7, Endangered Species Act, Consultation (completed); Section 4(f) Department of Transportation Act, Consultation (completed); Stream Channel Alteration Permit (exempt per Senate Bill 1016 SD1 HD1); HDOT Plan Review (pending); Grading Permit (pending); Coastal Zone Management Federal Consistency Review (pending)

G.6 – Activity Description

a. Describe the construction activity. The existing Kaipapa'u Stream Bridge is deficient due to age and dilapidation, and requires demolition and replacement. The project area required for construction would be approximately 1.6 acres. The project's scope of work includes installation of erosion controls, clearing, grubbing, grading, temporary placement of sand bags to redirect the stream during construction relocation and installation of waterlines and electrical lines, construction and use of a temporary detour roadway and Acrow bridge, demolition of the existing bridge and construction of a new bridge, partial demolition and reconstruction of the abutments, removal of the existing center pier wall, excavation & construction of eight new drilled shafts outside the stream channel, maintenance dredging, and bank stabilization with shotcrete and dumped riprap. All excavated material (soils & dewatering effluent) will be placed in a temporary retention area for treatment and disposal. No excavated material will discharge to the stream.

The replacement of the Kaipapa'u Stream Bridge and maintenance work will be completed through phased construction and demolition. Silt fences will be installed on down slope portions of the project site. A staging area, temporary dewatering basin, temporary concrete wash-out basin, and stabilized construction entrances will be prepared.

Sandbags will be used to divert normal-stream flow around the work area. The temporary placement of sandbags to redirect the stream during construction of the temporary detour road (sandbag diversion approximately 610 feet long) and new bridge (sandbag diversion

approximately 600 feet long) and will be designed based on the Contractor's means and methods. It is assumed that 7 sandbags (1-foot-wide each) will be placed at the base (4 sandbags on the side of the channel closer to the work area, and 3 sandbags on the other side of the temporary channel). Placement of the temporary sandbag diversion will require approximately 25 cubic yards (CY) of temporary fill placed within the Mean Higher High Water (MHHW) and 5 CY of temporary fill placed within the Ordinary High Water Mark (OHWM).

A temporary construction entrance ramp will be constructed on the mauka and makai portions of the stream comprised of dumped rip-rap. There will be no interruption of stream flow. In-stream work will be completed during the low rainfall season (August to October), and during fair weather conditions.

Approximately 270 CY of maintenance dredging will be performed to remove accumulated sediment and debris from under and around the bridge partially within the MHHW. Approximately 5 CY is located within the MHHW of Kaipapa'u Stream. The excavated spoils and demolition debris will not be discharged into the stream. Spoils will be dewatered in a detention basin and dried debris will be disposed of off-site at a County-approved landfill. Removed material will be contained in a temporary stockpile site with implemented best management practices (BMPs) to contain and prevent material from comingling with storm water runoff and entering into State waters. A solid waste disclosure form will be submitted to the Department of Health (DOH) Solid Waste Branch.

The temporary Acrow bridge will be 90 feet long by 42 feet wide, or approximately 3,780 square feet, and constructed with pre-cast concrete pier columns supporting the steel deck. The bridge will be comprised of two lanes and a pedestrian walkway on the makai side of the Kaipapa'u Stream Bridge to mitigate traffic impacts during construction. The Acrow bridge will be constructed and installed in two 45-foot spans and supported by five pre-cast concrete piers, one of which is located within the MHHW. Placement of the one pier in the MHHW will require 1 CY of temporary fill below the MHHW. Temporary dumped rip-rap will be placed around the Acrow bridge pier within the MHHW and be sized approximately 54 feet long by 15 feet wide by 2 feet deep, or 810 square feet, with a volume of 50 CY. A 6-foot temporary layer of filter rock will be placed under the rip-rap with a volume of approximately 13 CY. Upon completion of the bridge replacement, the Acrow bridge and piers will be removed and disturbed areas restored to their pre-construction condition.

Demolition of the existing Kaipapa'u Stream Bridge will include the removal of the existing concrete center pier wall, of which approximately 5 CY is located within the MHHW(26 feet long by 4 feet wide or approximately 104 square feet).

The new replacement bridge will be 110 feet long by 57 feet wide, or approximately 6,270 square feet, and include two 12-foot travel lanes plus two 8.5-foot shoulders, two 5-foot pedestrian walkways/bicycle lanes, reinforced guardrails, and drainage features. The new bridge will be constructed using prestressed concrete planks and cast-in-place bridge decks. The new right-of-way (ROW) will be 66 feet wide. The project will involve partial demolition and reconstruction of the abutments requiring excavation and construction of eight new 4-foot drilled shafts outside of the OHWM and MHHW. All work proposed for the reconstruction of the Kaipapa'u Stream Bridge would be completed above and along the outer banks of the streams and no work is proposed within the stream. The new bridge would accommodate utilities currently attached to the existing bridge. No debris would be allowed to fall into or enter the stream.

The north bank makai of the bridge will be stabilized with dumped rip-rap outside of the MHHW. In addition to stabilization, the dumped rip-rap will provide construction access to the stream for mechanical equipment.

A section of the existing wall running along the northern bank mauka of the bridge collapsed during a major storm in 2008. Emergency repairs were conducted to create a wall of sandbags. The existing sandbag wall, located outside the OHWM, will be stabilized with the placement of basalt boulders at the toe of the sandbags. The existing sandbags will then be covered with shotcrete. Work for the stabilization of the wall will be performed above the OHWM. No debris would be allowed to fall into or enter the stream.

Portions of an existing 12-inch diameter waterline beneath Kaipapa'u Stream will be repaired. The portions of the 12-inch waterline to be replaced are located outside the stream (see **Attachment B, Construction Drawings, C-20, C-28**) and will be repaired via open trench (approximately 85 linear feet). The existing 12-inch waterline under the stream will be temporarily removed from service during the repairs and then reconnected and placed back into service following completion of the 12-inch waterline work. During repairs a temporary 12-inch 125-foot-long or 125 square foot waterline will be placed on the existing pedestrian bridge.

The replacement of an existing 16-inch diameter will require the removal of the existing waterline, placement of a temporary waterline, and installation of the new 16-inch diameter waterline over the stream. The temporary 16-inch diameter 250-foot-long or 333 square foot waterline will be placed on the temporary detour bridge during construction. The new permanent 16-inch diameter 155 feet long or 207 square feet waterline will be installed over the stream within the new bridge 3.2-foot-wide concrete bridge

encasement. Following the installation of the 16-inch permanent waterline the temporary waterline will be removed.

Above the MHHW and OHWM, the project will also include the reconstruction of the 6foot-high concrete wall with wood fence panels on the northern side of the bridge, replacement of fencing, acquisition of two properties (Tax Map Keys (TMKs) 5-4-18: 3 and 5-4-11: 20), removal of an existing septic system and leaching field on TMK: 5-4-11: 20, and demolition of two buildings on TMK 5-4-18: 3 and one building on TMK 5-4-11: 20. Acquisition of property and demolition of structures is required for construction access and for the installation of waterlines to be supported on the outside edges of the new bridge.

In-water work would only be required for the minor maintenance dredging, removal of the existing bridge center pier wall, temporary placement of sandbags to divert the steam around the open work area, and temporary placement of one Acrow bridge pier within Kaipapa'u Stream.

The sequencing of construction activity is as follows:

- <u>Install best management practices (BMPs)/erosion control measures (see</u> Attachment B, Construction Drawings, Sheet C-18 and C-27).
- Install temporary 12" water line and relocate existing 12" water line (see Attachment B, Construction Drawings, Sheets C-20, C-28, and C-29).
- <u>Relocate electrical utilities.</u>
- Construct trial and load test drilled shafts and perform load test.
- <u>Construct detour roadway and temporary Acrow bridge (see Attachment B,</u> <u>Construction Drawings, Sheets C-22, and C-27).</u>
- <u>Demolish existing Kaipapa'u Stream Bridge. Expose existing 16</u>" water line jacket and concrete support system.
- <u>Construct Phase 1 of new Kaipapa'u Stream Bridge (see Attachment B,</u> <u>Construction Drawings, Sheets S0.7, S0.7A, and S0.7B).</u>
- <u>Partially remove detour roadway and temporary bridge.</u> Construct temporary pavement transitions, signing and pavement markings.
- <u>Construct Phase 2 of new Kaipapa'u Stream Bridge (see Attachment B,</u> <u>Construction Drawings, Sheets S0.8, S0.8A, and S0.8B).</u>
- <u>Remove remainder of detour roadway and temporary bridge.</u>
- <u>Construct sandbags and shotcrete lining along north bank above stream, upstream of Kaipapa'u Stream Bridge (see Attachment B, Construction Drawings, Sheet C-18).</u>
- Construct dumped riprap along north and south bank above stream, downstream of Kaipapa'u Stream Bridge (see Attachment B, Construction Drawings, Sheets C-16 and C-18).

- <u>Construct AC pavement (see Attachment B, Construction Drawings, Sheet C-16).</u>
- Construct final signing and pavement markings.
- <u>Remove temporary BMPs.</u>
- b. Check one of the boxes below to indicate if the construction activity requires NPDES permit coverage for discharges of storm water associated with construction activities.
 - Yes, my construction activity has a total land disturbance of one (1) acre or more.
 My NPDES Permit or NGPC File No. is included in G.5 above.
 - Yes, my construction activity has a total land disturbance of one (1) acre or more.
 I will submit an NPDES permit application to the CWB.
 - □ No, my construction activity disturbs less than one (1) acre. I will utilize BMPs at the construction site to prevent pollution to State waters.
- d. Provide the estimated date when construction will begin. The estimated scheduled start time for construction is January 2021. The overall duration of the project is expected to be approximately three years. A detailed schedule of construction activity will be completed when a contractor is selected for the project and provided to DOH-CWB 30 days prior to the start of construction.
- e. Provide the estimated date when construction will end. To be determined by the General Contractor, dates will be submitted to DOH CWB 30 days before the start of construction.
- *f. Provide the estimated date when dewatering activities will begin.* <u>To be determined by</u> the General Contractor, dates will be submitted to DOH CWB 30 days before the start of construction.
- g. Provide the estimated date when dewatering activities will end. To be determined by the General Contractor, dates will be submitted to DOH CWB 30 days before the start of construction.
- *h.* Describe the time frame of when the proposed dewatering discharges will take place during the work day (work hours, overnight, 24 hours a day, etc.). Dewatering activities will be intermittent according to the construction phasing. Dewatering activities is expected to occur only during normal working hours.
- *i.* Describe the history of land use at the proposed construction site and surrounding area. The history of land use shall include the facilities and/or activities that have occurred in the past. Make note of any known or possible contamination that may have taken place at the proposed construction site or in the surrounding area. Include any completed or on-going corrective measures that have been implemented to remediate the contaminated area(s) The project is located along Kamehameha Highway (State Route 83) near

Milepost 21 in the Hau'ula, Island of O'ahu, Hawai'i, and includes replacing the existing 1932 Kaipapa'u Stream Bridge with a new bridge and maintenance dredging and bank stabilization of the Kaipapa'u Stream. The bridge serves northbound traffic (toward Kahuku) and southbound traffic (toward Kane'ohe) on Kamehameha Highway. The bridge structure has two 40-foot spans and is constructed from reinforced concrete with a wooden pedestrian walkway attached to the mauka (west) side of the bridge. The bridge crosses Kaipapa'u Stream approximately 300 feet upstream from coastal marine waters. Beneath and makai of the Kaipapa'u Stream Bridge the stream is tidally influenced. Lands surrounding the bridge are single family residential and commercial in character and are privately owned. Parcels immediately surrounding Kaipapa'u Stream Bridge are single family residential.

j.

Describe the potential pollutant(s) that may be present and its source(s) at the proposed construction site and surrounding area. If any known or possible contamination that has taken place at the proposed construction site or in the surrounding area has not been remediated, the pollutant(s) and its source(s) should be included in this item. This item should address the pollutant(s) and source(s) associated with the <u>past</u> or <u>existing</u> conditions at the construction site and surrounding areas, not those associated with the proposed construction activity. There are no pre-existing conditions other than soils that would result in potential for adverse impacts due to construction storm water runoff. The following practices will be employed to prevent discharges due to erosion: (1) adherence to the County-approved Erosion Control Plan; and (2) structural measures including the use of temporary BMPs shall be placed to divert storm flows around materials storage locations. PVC sheet plastic or similar material shall also be placed to prevent inadvertent mixing of stored materials with storm water. Where mixing of stored with soils cannot be avoided use of silt fencing and/or vegetative controls including grassing and hydro-mulching will be employed.

G.7 – Physical Source Water Quality

- a. Provide the source of the construction activity dewatering effluent (*i.e.* ground water, seepage, storm water, etc.. <u>Groundwater</u>
- b. Place an "x" in either the "Believe Present" column or the "Believe Absent" column based on the test results or your best estimate.

Parameter	Believe Present	Believe Absent
Floating Debris		Х
Scum or Foam		Х
Color		Х
Odor		Х

List the Discharge Point(s) that you identified in Section 6 of the e-Permitting CWB Individual NPDES Form that apply to this table <u>Discharge Point No. 1 (From)</u>, Kaipapa'u Stream (21.61717846380141, -157.9142857880188); and

Discharge Point No. 2 (To), Kaipapa'u Stream (21.617151034652878, -157.91334701486358) (See Attachment A, Figure 2, Site Layout Plan).

Please ensure that all Discharge Points are accounted for. If you leave this item blank, we will assume that this table applies to all Discharge Points. If needed, you may copy, paste, and complete this table for each Discharge Point with different test results.

G.8 – Water Quality Parameters

a. You are required to fulfill all requirements and <u>check the box</u> below. If you do not check the box, your application will be considered incomplete, and the CWB may deny your request for NPDES permit coverage with prejudice.

See Attachment C, Source Water Quality Assessment.

- \boxtimes I certify that:
 - *I tested all of the parameters in the Table G.8 below, and a copy of the laboratory data sheets with Quality Assurance/Quality Control and Chain of Custody documents is included in Attachment B. I am reporting the results of my test in Table G.8 below.*
 - I have included a description of my sample collection technique in Attachment B.
 - All test results were obtained from a representative sample as defined in HAR, Chapter 11-55, Appendix A, Section 14(a). Note: The burden of proving that sampling or monitoring is representative is on the Permittee.
 - The test methods that I utilized were promulgated in 40 CFR Part 136 and, when applicable, listed in the references of chemical methodology for seawater analyses (see HAR, Chapter 11-54, Section 10(b)). Note: If a test method has not been promulgated for a particular parameter, you may apply for approval of an alternate test procedure by following 40 CFR Section 136.4.
 - The test methods that I utilized have detection limits below and closest to the numerical limit specified in HAR, Chapter 11-54. For situations where the numerical limitation is below the detection limit of the test methods, I used the test method which has the detection limit closest to the numerical limitation.
- b. Complete Table G.8 below. The test results shall be reported to the nearest decimal place or whole number as shown in the parentheses following each parameter. For example, "Temperature $(0.1 \ ^\circ C)$ " -Temperature shall be reported to the nearest tenth of a centigrade and "Ammonia Nitrogen (1 µg/l)" Ammonia Nitrogen shall be reported to the nearest whole microgram per liter. One test result may be reported for Salinity, Chloride, or Conductivity. If the test result is not detectable, indicate that the test result is "N.D." or "not detected."

Parameter	Test Result	Units
Total Nitrogen (10 μg/l)	710	$\mu g/l$
Ammonia Nitrogen (1 µg/l)	N.D.	µg/l
<i>Nitrate</i> + <i>Nitrite</i> (1 μ g/l)	540	µg/l
Total Phosphorus (10 µg/l)	28	µg/l
Turbidity (0.1 NTU)	0.42	NTU
Total Suspended Solids (1 mg/l)	0.6	mg/l
pH (0.1 standard units)	6.74	standard units
Dissolved Oxygen (0.1 mg/l)	3.54	mg/l
Oxygen Saturation (1%)	62	%
Temperature (0.1 ^{o}C)	24.7	^{o}C
Salinity (0.1 ppt)	N.D.	ppt
or Chloride (0.1 mg/l)*	N/A	mg/l
or Conductivity (1 µmhos/cm)*	357	µmhos/cm
Oil and Grease (1 mg/l)	N.D.	mg/l
* Fresh waters and effluent	samples	

Table G.8

Fresh waters and effluent samples

List the Discharge Point(s) that you identified in Section 6 of the e-Permitting CWB Individual NPDES Form that apply to Table G.8 Discharge Point No. 1 (From), Kaipapa'u Stream (21.61717846380141, -157.9142857880188); and

Discharge Point No. 2 (To), Kaipapa'u Stream (21.617151034652878, 157.91334701486358) (See Attachment A, Figure 2, Site Layout Plan).

Please ensure that all Discharge Points are accounted for. If you leave this item blank, we will assume Table G.8 applies to all Discharge Points. If needed, you may copy, paste, and complete Table G.8 for each Discharge Point with different test results.

G.9 – Toxic Parameters

You are required to fulfill all requirements and <u>check</u> the box below. If you do not check a. the box, your application will be considered incomplete, and the CWB may deny your request for NPDES permit coverage with prejudice.

See Attachment C, Source Water Quality Assessment.

- \boxtimes *I certify that:*
 - I tested and I am reporting (in micrograms per liter) all of the parameters which are believed to be present in the construction dewatering effluent in Tables G.9.a to G.9.h below. Note: Everything identified in G.6.g. and G.6.h. shall be included.
 - For all test results that were not detectable, I indicated "N.D." or "not detected" in the "Test Result" column of Tables G.9.a to G.9.h.

- For all parameters not believed to be present, I indicated "N/A" for "not applicable" in the "Test Result" column of Tables G.9.a to G.9.h.
- If the "Test Result" columns of Tables G.9.a to G.9.h are left blank, the CWB will consider these parameters to be present. The NPDES permit will require all of these parameters to be monitored.
- A copy of the laboratory data sheets with Quality Assurance/Quality Control and Chain of Custody documents, are included in Attachment B.
- All test results were obtained from a representative sample as defined in HAR, Chapter 11-55, Appendix A, Section 14(a). Note: The burden of proving that sampling or monitoring is representative is on the Permittee.
- The test methods that I utilized were promulgated in 40 CFR Part 136 and, when applicable, listed in the references of chemical methodology for seawater analyses (see HAR, Chapter 11-54, Section 10(b)). Note: If a test method has not been promulgated for a particular parameter, you may apply for approval of an alternate test procedure by following 40 CFR Section 136.4.
- The test methods that I utilized have detection limits below and closest to the numerical limit specified in HAR, Chapter 11-54. For situations where the numerical limitation is below the detection limit of the test methods, I used the test method which has the detection limit closest to the numerical limitation.
- b. Complete Tables G.9.a to G.9.h below. The parameters are categorized into Metals, Organonitrogen Compounds, Pesticides, Phenols, Phthalates, Polynuclear Aromatic Hydrocarbons, Volatile Organics, and Others and are listed alphabetically. A Glossary of Chemicals is listed in Attachment C.

List the Discharge Point(s) that you identified in Section 6 of the e-Permitting CWB Individual NPDES Form that apply to Tables G.9.a to G.9.h <u>Discharge Point No. 1</u> (From), Kaipapa'u Stream (21.61717846380141, -157.9142857880188); and Discharge Point No. 2 (To), Kaipapa'u Stream (21.617151034652878, -157.91334701486358) (See Attachment A, Figure 2, Site Layout Plan).

Please ensure that all Discharge Points are accounted for. If you leave this item blank, we will assume Tables G.9.a to G.9.h applies to all Discharge Points. If needed, you may copy, paste, and complete Tables G.9.a to G.9.h for each Discharge Point with different test results.

Table G.9.a - Metals

Total Recoverable Metal Parameter	Test Result	Units
Aluminum	N/A	μg/l
Antimony	N/A	µg/l
Arsenic	N/A	μg/l
Beryllium	N/A	µg/l
Cadmium	N/A	μg/l
Chromium (VI)	N/A	μg/l
Copper	N/A	μg/l
Lead	N/A	μg/l
Mercury	N/A	μg/l
Nickel	N/A	μg/l
Selenium	N/A	μg/l
Silver	N/A	μg/l
Thallium	N/A	μg/l
Tributyltin	N/A	μg/l
Zinc	N/A	μg/l

Table G.9.b	Organonitrogen	Compounds

Organonitrogen Compound Parameter	Test Result	Units
Benzidine	N/A	μg/l
2,4-Dinitro-o-cresol	N/A	μg/l
Dinitrotoluenes	N/A	μg/l
1,2-Diphenylhydrazine	N/A	μg/l
Nitrobenzene	N/A	μg/l
Nitrosamines	N/A	μg/l
N-Nitrosodibutylamine	N/A	μg/l
N-Nitrosodiethylamine	N/A	μg/l
N-Nitrosodimethylamine	N/A	μg/l
N-Nitrosodiphenylamine	N/A	μg/l
N-Nitrosopyrrolidine	N/A	μg/l

Table G.9.c. - Pesticides

Pesticide Parameter	Test Result	Units
Aldrin	N.D.	µg/l
Chlordane	N/A	µg/l
Chlorpyrifos	N/A	μg/l
DDT	N.D.	µg/l
Demeton	N/A	$\mu g/l$
Dieldrin	N.D.	µg/l
Endosulfan	N.D.	µg/l
Endrin	N.D.	µg/l
Guthion	N/A	$\mu g/l$
Heptachlor	N.D.	μg/l
Lindane	N/A	µg/l
Malathion	N/A	$\mu g/l$
Methoxychlor	N.D.	µg/l
Mirex	N/A	µg/l
Parathion	N/A	µg/l
TDE - metabolite of DDT	N/A	µg/l
Toxaphene	N.D.	μg/l

Table G.9.d. - Phenols

Phenol Parameter	Test Result	Units
2-Chlorophenol	N/A	μg/l
2,4-Dichlorophenol	N/A	μg/l
2,4-Dimethylphenol	N/A	μg/l
Nitrophenols	N/A	μg/l
Pentachlorophenol	N/A	μg/l
Phenol	N/A	μg/l
2,3,5,6-Tetrachlorophenol	N/A	μg/l
2,4,6-Trichlorophenol	N/A	μg/l

Table G.9.e. - Phthalates

Phthalate Parameter	Test Result	Units
Bis (2-ethylhexyl) phthalate	N/A	µg/l
Dibutyl phthalate (esters)	N/A	µg/l
Diethyl phthalate (esters)	N/A	µg/l
Dimethyl phthalate (esters)	N/A	μg/l

Table G.9.f. - Polynuclear Aromatic Hydrocarbons

Polynuclear Aromatic Hydrocarbon Parameter	Test Result	Units
Acenaphthene	N.D.	$\mu g/l$
Fluoranthene	N.D.	μg/l
Naphthalene	N.D.	μg/l
Polynuclear aromatic hydrocarbons	N.D.	μg/l

Table G.9.g. - Volatile Organics

Volatile Organic Parameter	Test Result	Units
Acrolein	N.D.	μg/l
Acrylonitrile	N.D.	μg/l
Benzene	N.D.	μg/l
Carbon tetrachloride	N.D.	μg/l
Bis(2-chloroethyl)ether	N/A	μg/l
Bis(chloroethers-methyl)	N/A	μg/l
Bis(chloroisopropyl)ether	N/A	μg/l
Chloroform	N.D.	μg/l
Dichlorobenzenes	N.D.	μg/l

Volatile Organic Parameter	Test Result	Units
Dichlorobenzidine	N/A	μg/l
1,2-Dichloroethane	N.D.	µg/l
1,1-Dichloroethylene	N/A	μg/l
Dichloropropanes	N.D.	μg/l
1,3-Dichloropropene	N.D.	μg/l
Ethylbenzene	N.D.	μg/l
Hexachlorobenzene	N/A	μg/l
Hexachlorobutadiene	N/A	μg/l
Hexachlorocyclohexane, alpha	N/A	μg/l
Hexachlorocyclohexane, beta	N/A	μg/l
Hexachlorocyclohexane, technical	N/A	μg/l
Hexachlorocyclopentadiene	N/A	μg/l
Hexachloroethane	N/A	μg/l
Isophorone	N/A	μg/l
Pentachlorobenzene	N/A	μg/l
Pentachloroethanes	N/A	μg/l
1,2,4,5-Tetrachlorobenzene	N/A	μg/l
1,1,2,2-Tetrachloroethane	N.D.	µg/l
Tetrachloroethanes	N.D.	μg/l
Tetrachloroethylene	N/A	μg/l
Toluene	N.D.	μg/l
1,1,1-Trichloroethane	N.D.	μg/l
1,1,2-Trichloroethane	N.D.	μg/l
Trichloroethylene	N/A	$\mu g/l$
Vinyl chloride	N.D.	μg/l

Table G.9.h. - Others

Other Parameter	Test Result	Units
Chlorine	N/A	μg/l
Cyanide	N/A	μg/l
Dioxin	N/A	μg/l
Polychlorinated biphenyls	N/A	μg/l

G.10 – Site-Specific Dewatering Plan

You are responsible for the design, implementation, operation, and maintenance of the Site-Specific Dewatering Plan to ensure that discharges associated with construction activity dewatering will not cause or contribute to a violation of HAR, Chapter 11-54, Chapter 11-55, and Chapter 11-55 Appendix G.

Are you submitting the Site-Specific Dewatering Plan with your NPDES application?

 \square Yes. My Site-Specific Dewatering Plan complies with Section G.1 and the minimum requirements in Attachment D. It is included in Attachment D

Ø No. My Site-Specific Dewatering Plan will comply with Section G.1 and the minimum requirements in Attachment D. If you do not submit the Site-Specific Dewatering BMPs Plan with your NPDES application, you acknowledge that:

- The CWB may not provide comments on information in Section G.10.
- You are required to submit Section G.10 to the DOH-CWB for comment at least 30 calendar days prior to starting dewatering activities. All questions/concerns that the DOH may have must be answered to the satisfaction of the CWB.
- The CWB will review Section G.10 in the order received and will not expedite the review to accommodate your schedule.
- The CWB has no required time limits to review any Site-Specific Dewatering Plan after issuance of an NPDES Permit.
- You are potentially exposing yourself to significant delays.

G.11 – Additional Information

Include any other site-specific information pertaining to the project or activity in Attachment E. If nothing is included in Attachment E, the CWB will assume you do not want to include additional information.

Attachment A – Maps and Flow Chart (Sections G.3 and G.4)

MAPS AND FLOW CHART

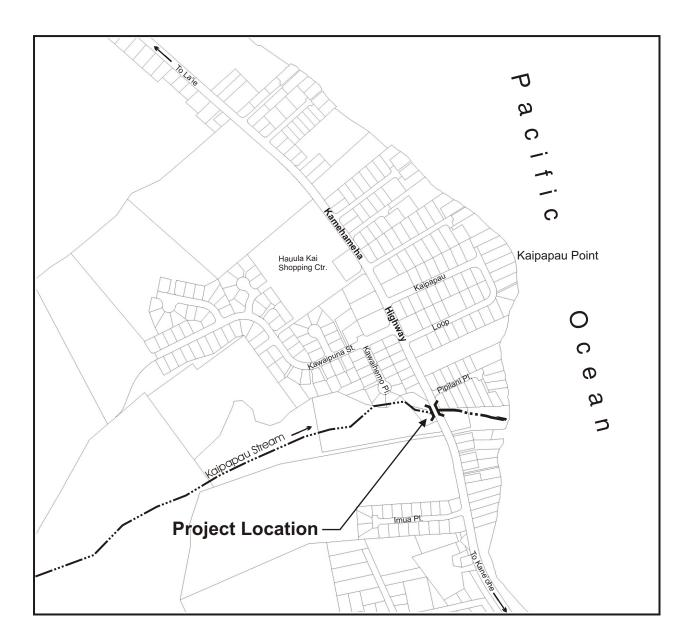

Attachment A- Contents

Figure 1	l – Project l	Location

Figure 2 – Site Layout Plan

Figure 3 – Dewatering Flow Chart

Attachment A, Figure 1 Project Location (Item G.3.)

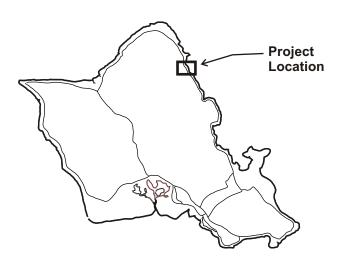
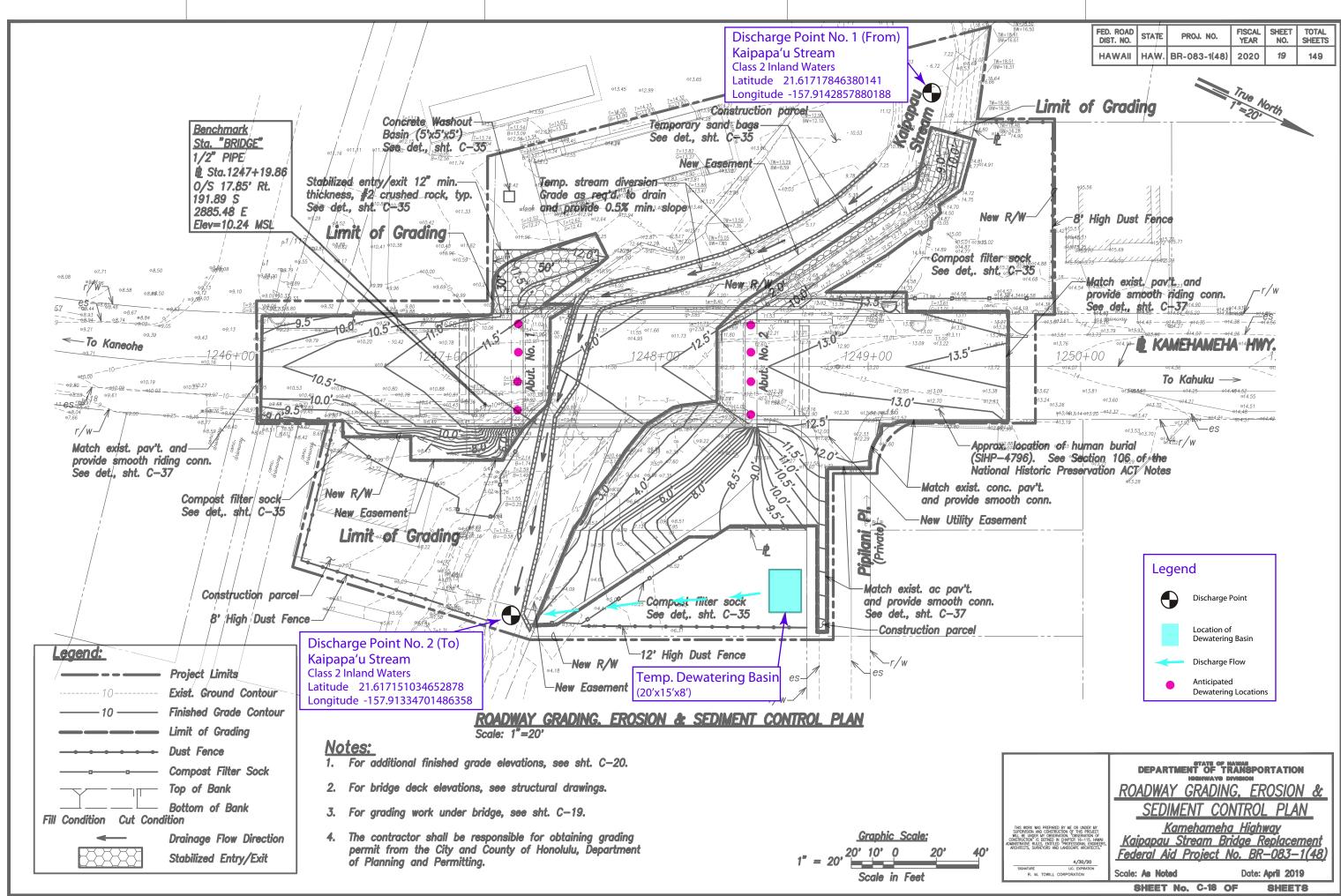



FIGURE 1 PROJECT LOCATION Kaipapa'u Stream Bridge Replacement Ko'olauloa District, O'ahu, Hawai'i

Attachment A, Figure 2 Site Layout Plan (Items G.3., G.6., G.7., G.8., & G.9.)

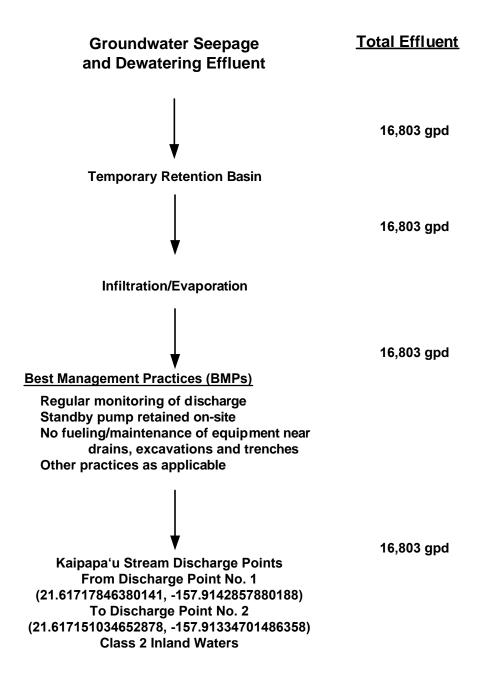
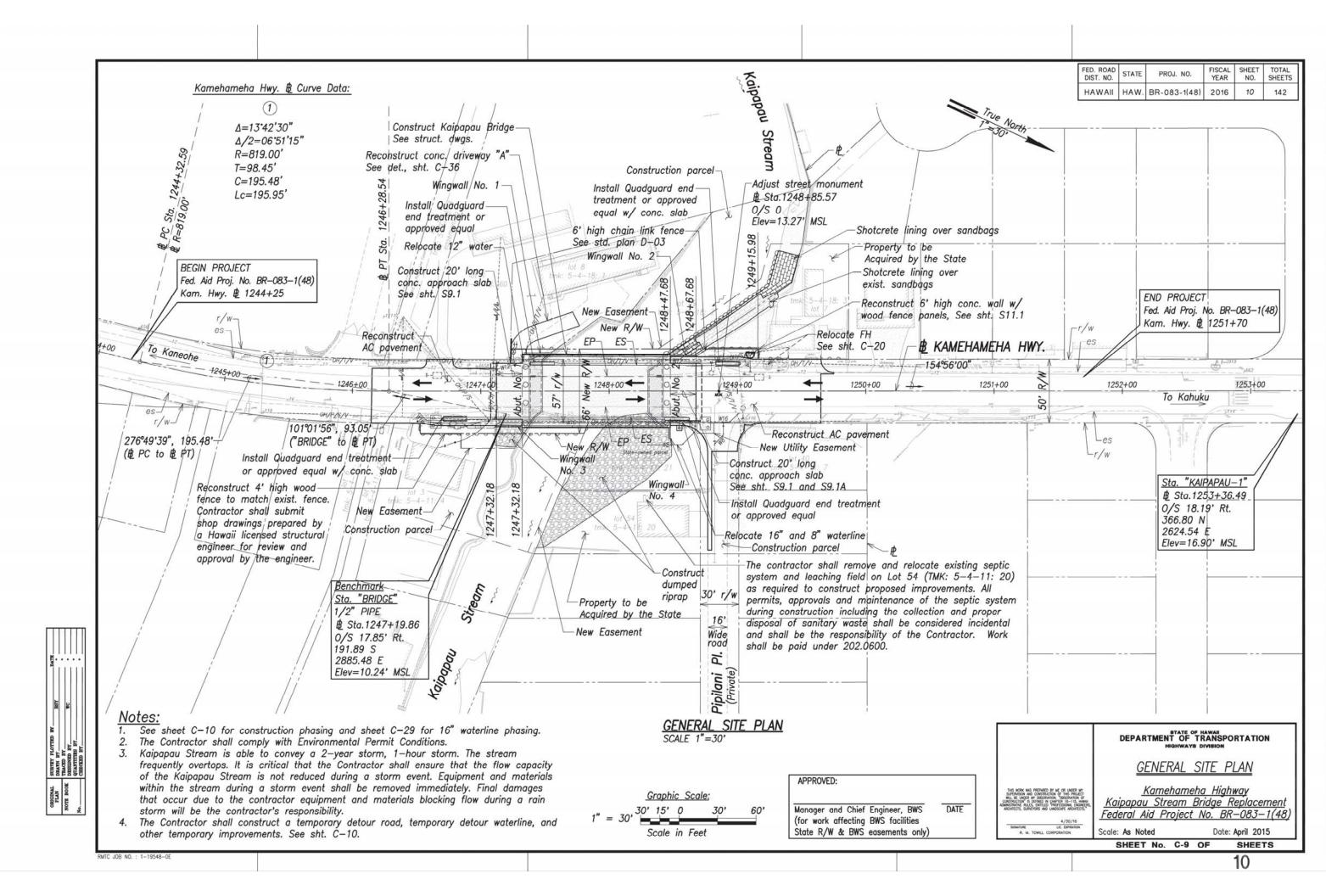
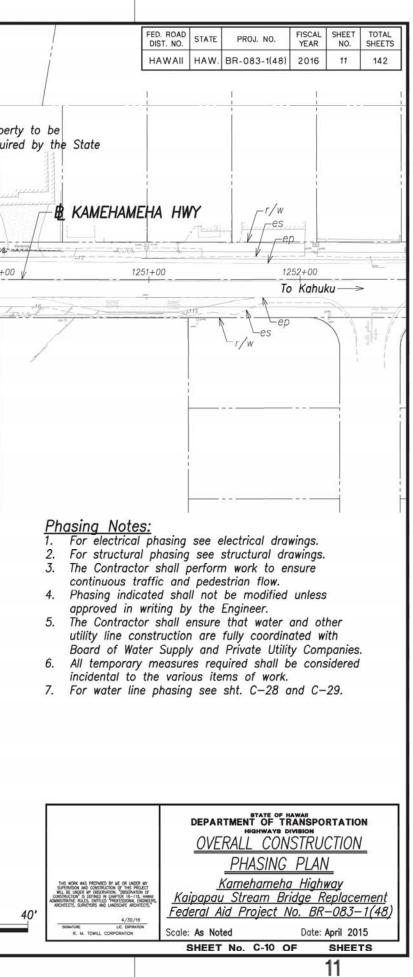
RMTC JOB NO. : 1-19548-0E

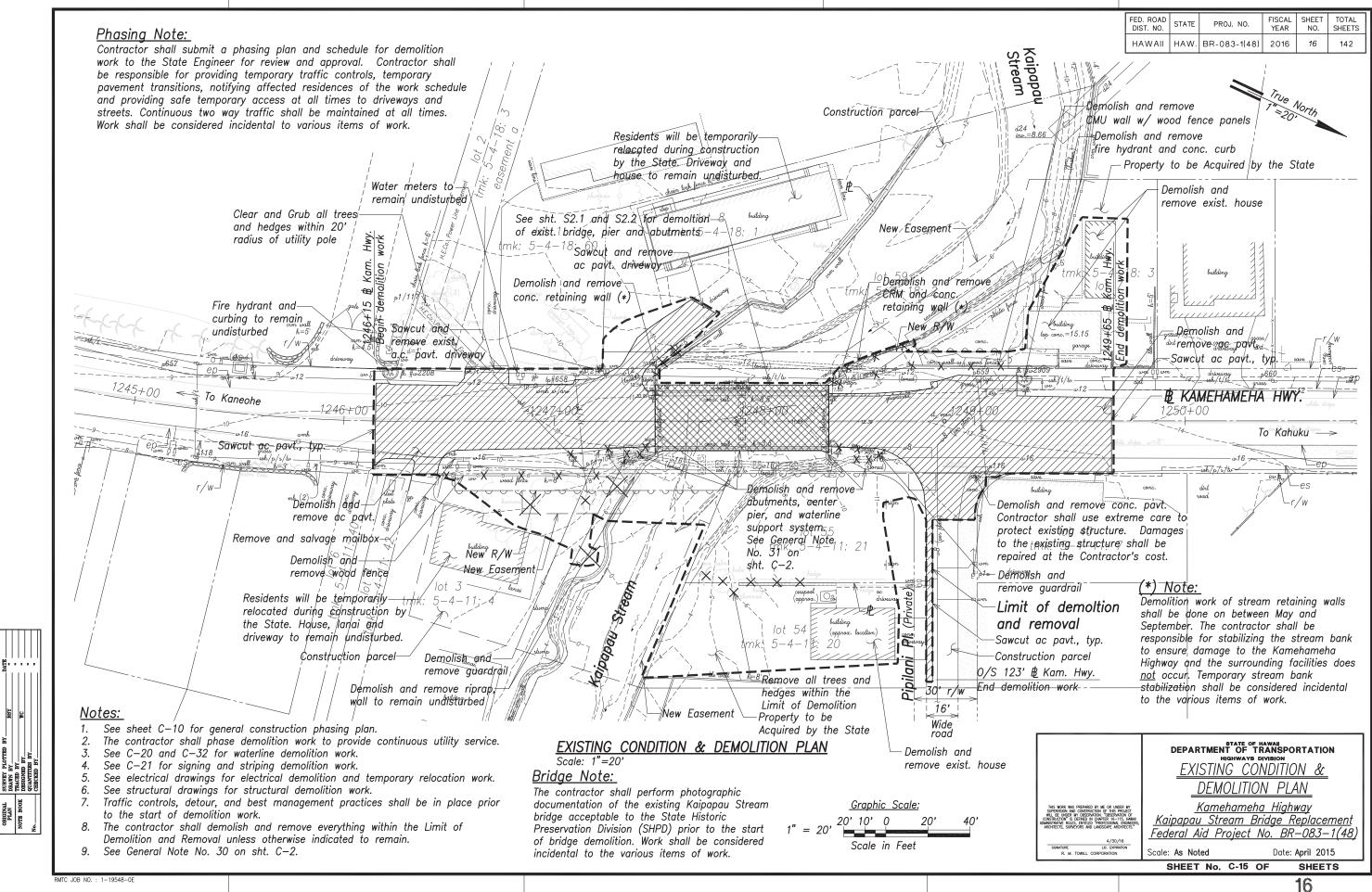
.

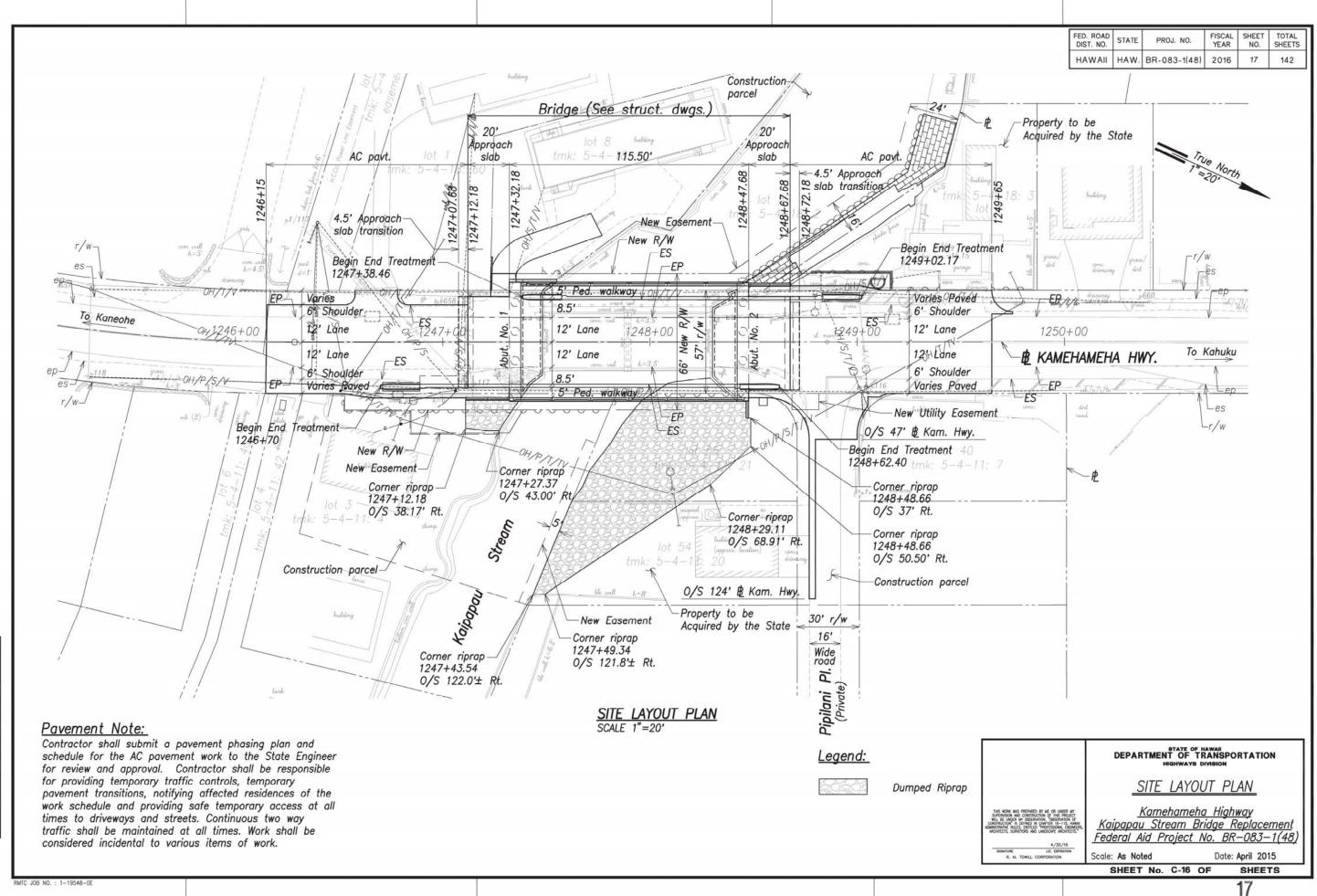
19

Attachment A, Figure 3 Dewatering Flow Chart (Item G.4.)

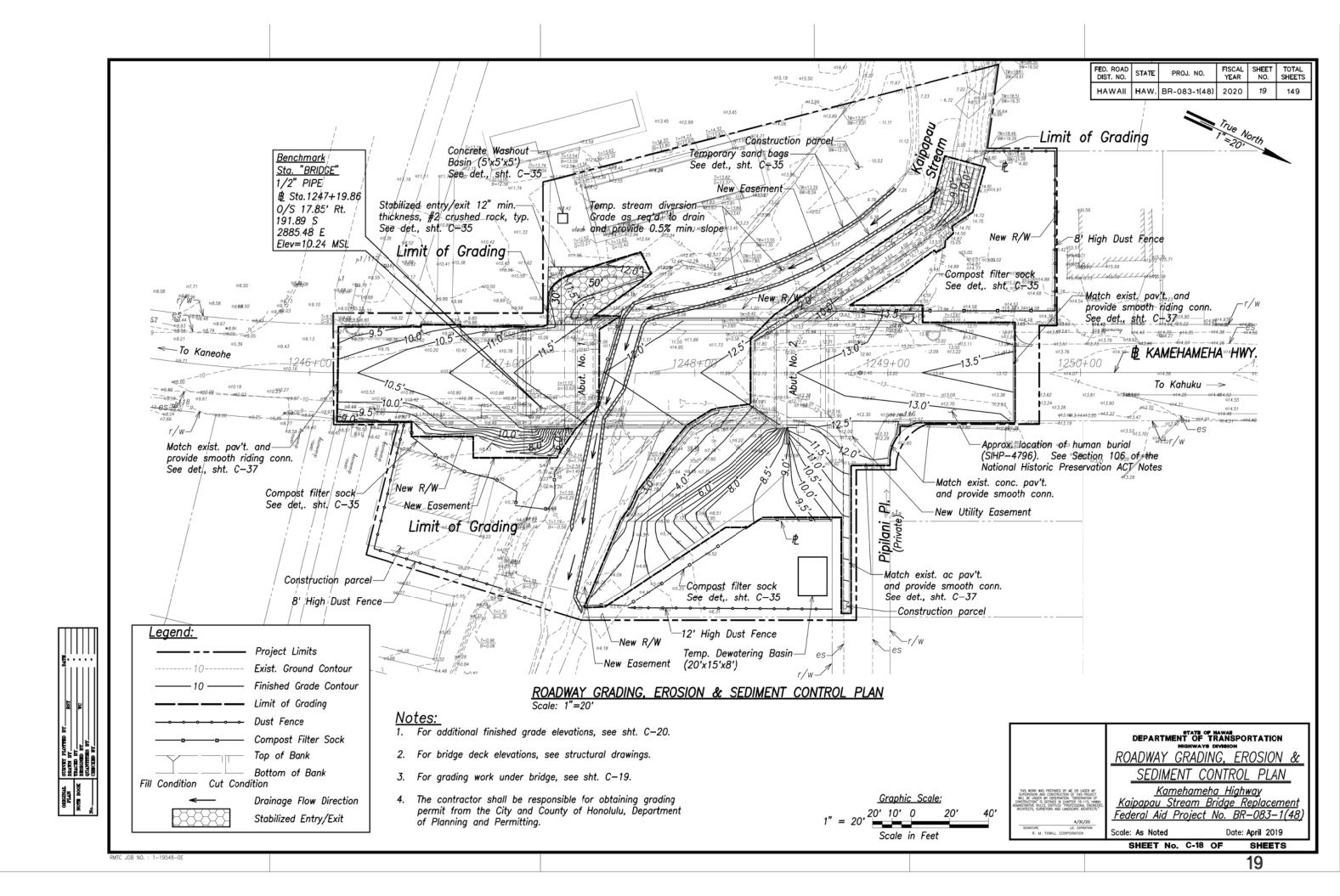
DEWATERING EFFLUENT FLOW CHART

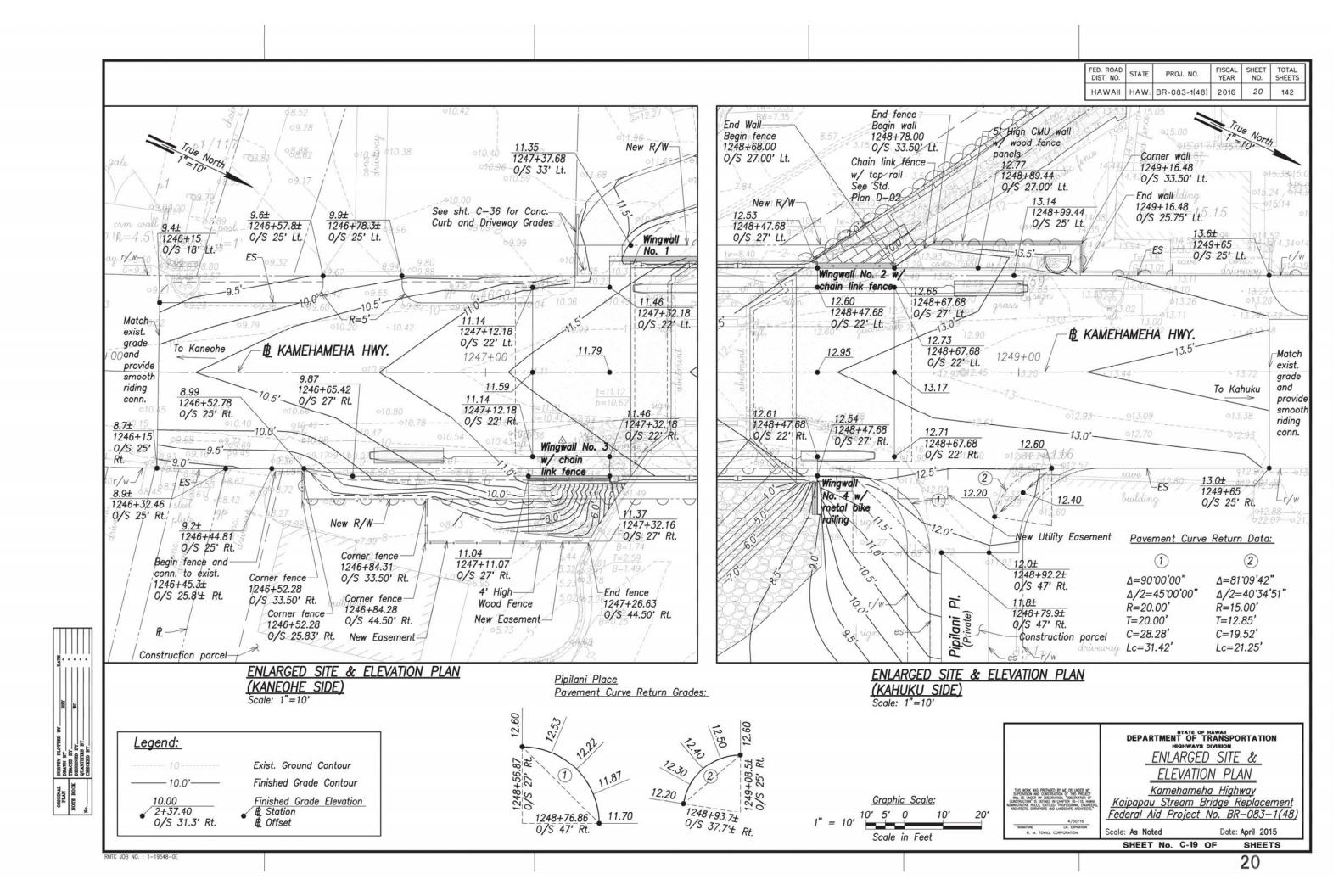





FIGURE 3 DEWATERING FLOW CHART Kaipapa'u Bridge Replacement Hau'ula, Ko'olauloa, O'ahu, Hawai'i


Attachment B Construction Drawings

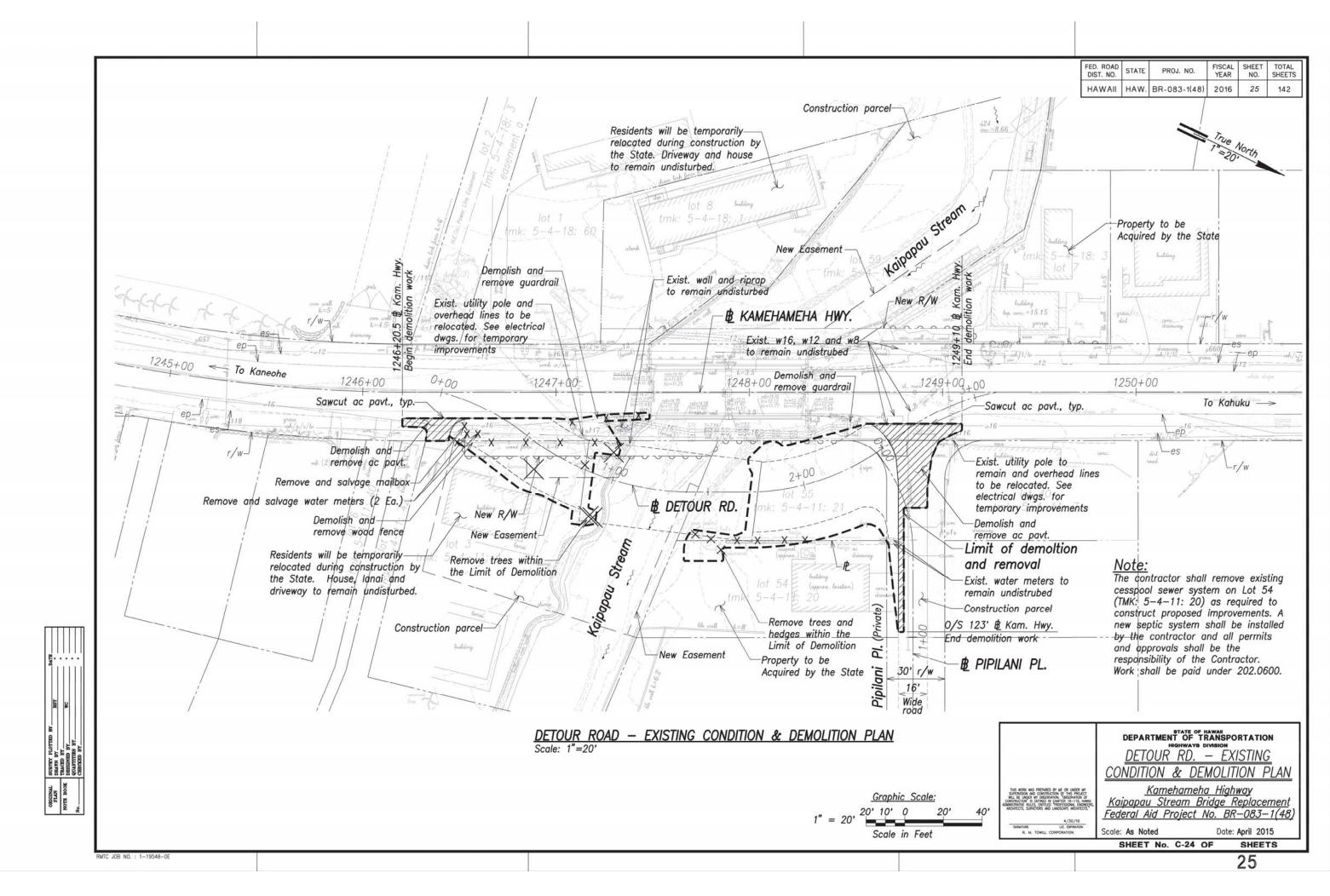
	Construction Parcel	X
	Residents will be temporarily	E E
	Irue North	×
	SOUTH STATES	property Prope
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	tainanan Prope
	New R/W 59	tmk 5-4-18: 3 lot 7 b
	1244+00 To Kaneohe 1245+00	OW/SATT DUST OH/IN an
	$\frac{1245+00}{11} \xrightarrow{44,1246+00} \frac{1245+00}{11} \xrightarrow{44,1246+00} \frac{1245+00}{11} \xrightarrow{1247+00} \frac{12}{20} \xrightarrow{10} \frac{12}{5} \xrightarrow{10} \frac{12}{2} \xrightarrow{10} \frac{12}{5} \xrightarrow{10} \xrightarrow{10} \frac{12}{5} \xrightarrow{10} \xrightarrow{10} \frac{12}{5} \xrightarrow{10} 1$	
		OH/I/
		W16 Contraction of the second se
	New R/W	New Utility Easement
	Residents will be temporarily be relocated during	tmk: 5-4-11: 7
	construction by the State	Pipilani (Private)
	Construction Parcel	
	New Easement	Construction Parcel
	Property to be Acquired by the State	16' Wide road
	OVERALL CONSTRUCTION PHASE Scale: 1"=20'	ING PLAN
	Suggested Construction Sequence of Major Constuction Items:	
	1 Install best management practices/erosion control measures. See Notes sheets and sht. C-17.	
	Install temporary 12" waterline and relocate existing 12" water line. See 12" Waterline Plan and Profile, sht. C-20. Relocate electrical utilities. See electrical drawings for temporary and permanent electrical relocation phasing.	
	3 Construct trial and load test drilled shafts and perform load test. See structural drawings.	
	4 Construct detour roadway and temporary bridge. See sht. $C-22$ to $C-27$ and stuctural drawings.	
	5 Demolish existing Kaipapau Stream bridge. See sht. C–15 and structural drawings. Expose existing 16" water line jacket and concrete sup	port system.
₩	6 Construct Phase 1 new Kaipapau Stream bridge. See Construction Sequence, Phase 1 of structural drawings, shts. S0.7, S0.7A, and S0.7B.	
NGC NGA	7 Partially remove Detour roadway and temporary bridge. Construct temporary pavement transitions, signing and pavement markings. Temporary work shall be considered incidental to the various items of work. Construct Phase 2 of new Kaipapau Stream bridge. See Construction Sequence, Phase 2 of structural drawings, shts. S0.8, S0.8A, and S0.8B.	
	7A Remove remainder of Detour roadway and temporary bridge.	
SURVEY PLOTTED BY DAATN BY TEARED BY QEANTITES BY CERCICED BY	8 Construct sand bags and shotcrete lining along north bank, upstream of Kaipapau Stream bridge. See sht. C–18.	
ALL SUB DOK DES QUA	9 Construct dumped riprap along north and south bank, downstream of Kaipapau Stream bridge. See sht. C–16 and C–18.	
ORIGINAL FLAN NOTE BOOK No.	10 Construct AC pavement. See sht. C–16. The contractor shall submit a pavement phasing plan and schedule for Engineer's review and approval.	<u>Graphic Scale:</u> 1" = 20' ^{20'} 10' 0 20'
	11 Construct final signing and pavement markings. See sht. C-21.	Scale in Feet
	RMTC JOB NO. : 1-19548-OE	

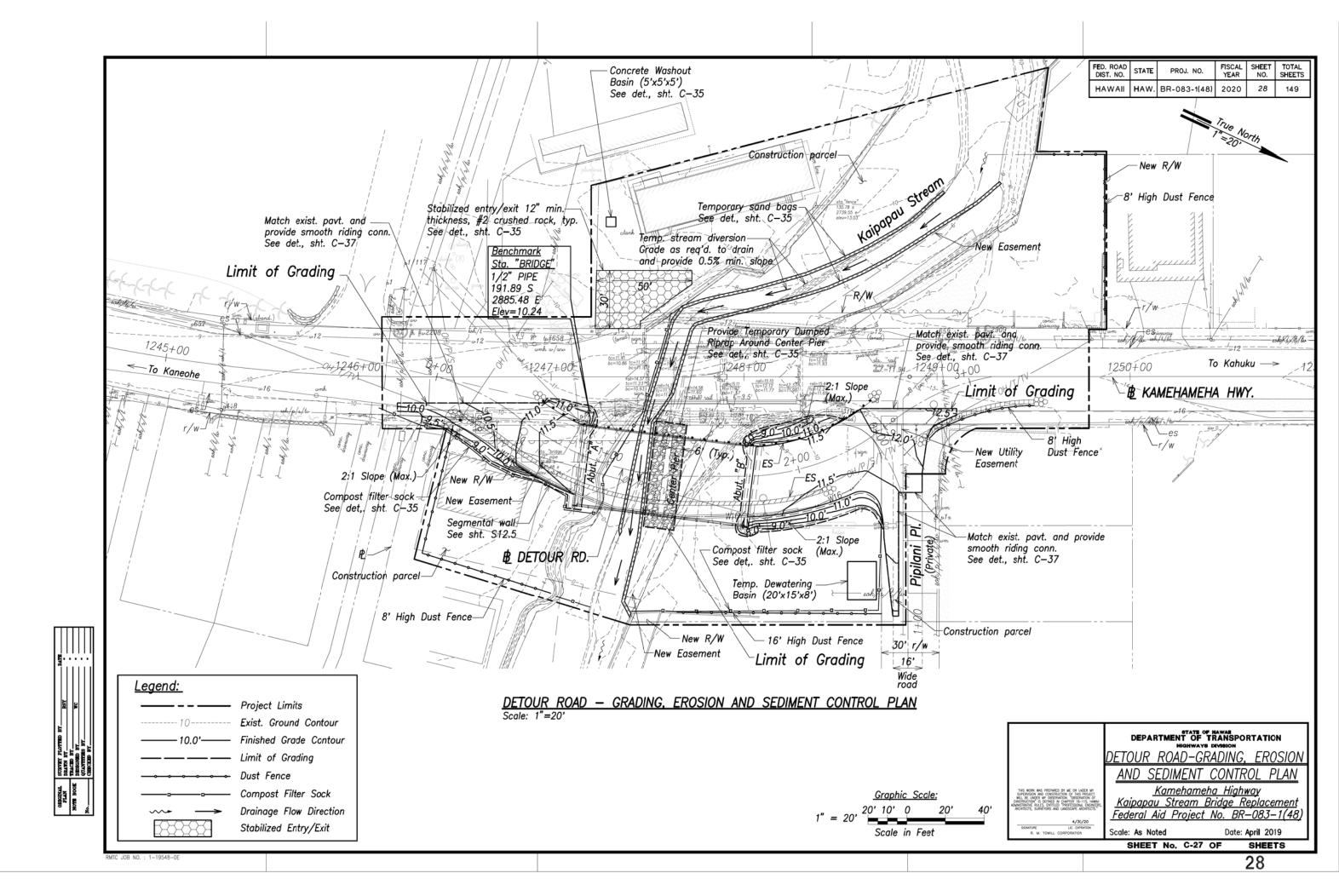


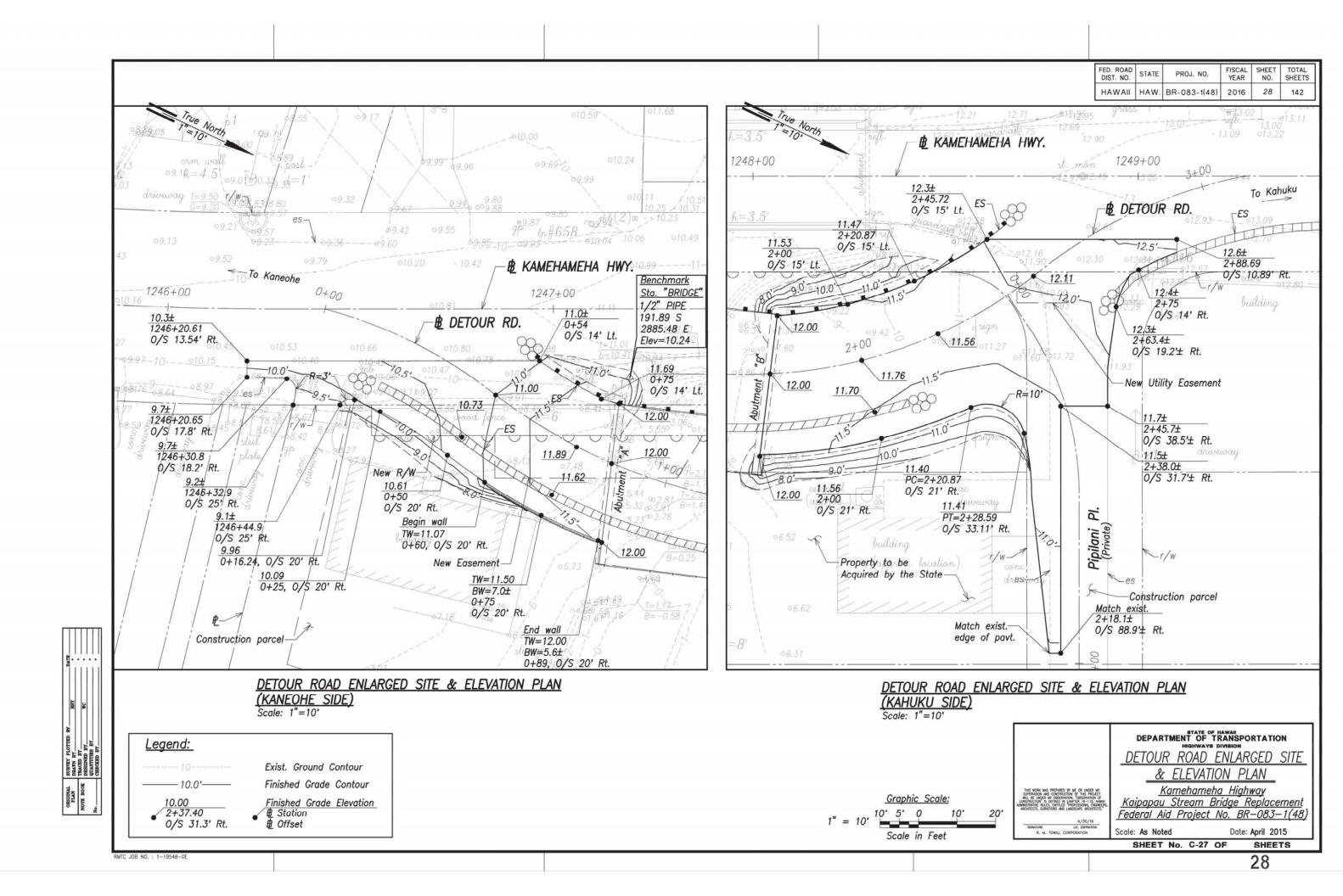

ğ. . . .

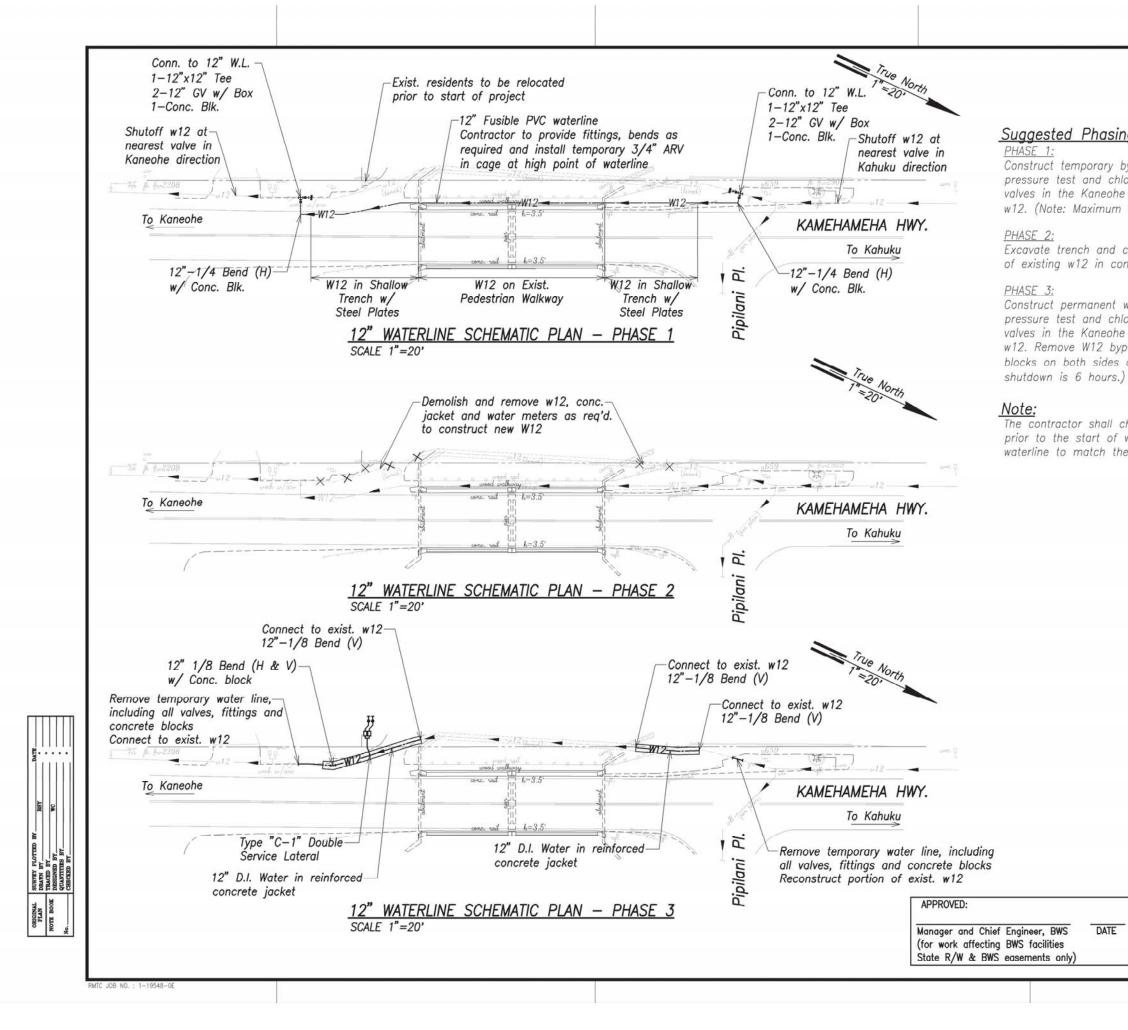
111

SURFEY PLOTTED DRAFN BY TRACED BY DESIGNED BY QUANTITIES BY CHECKED BY


PLAN PLAN



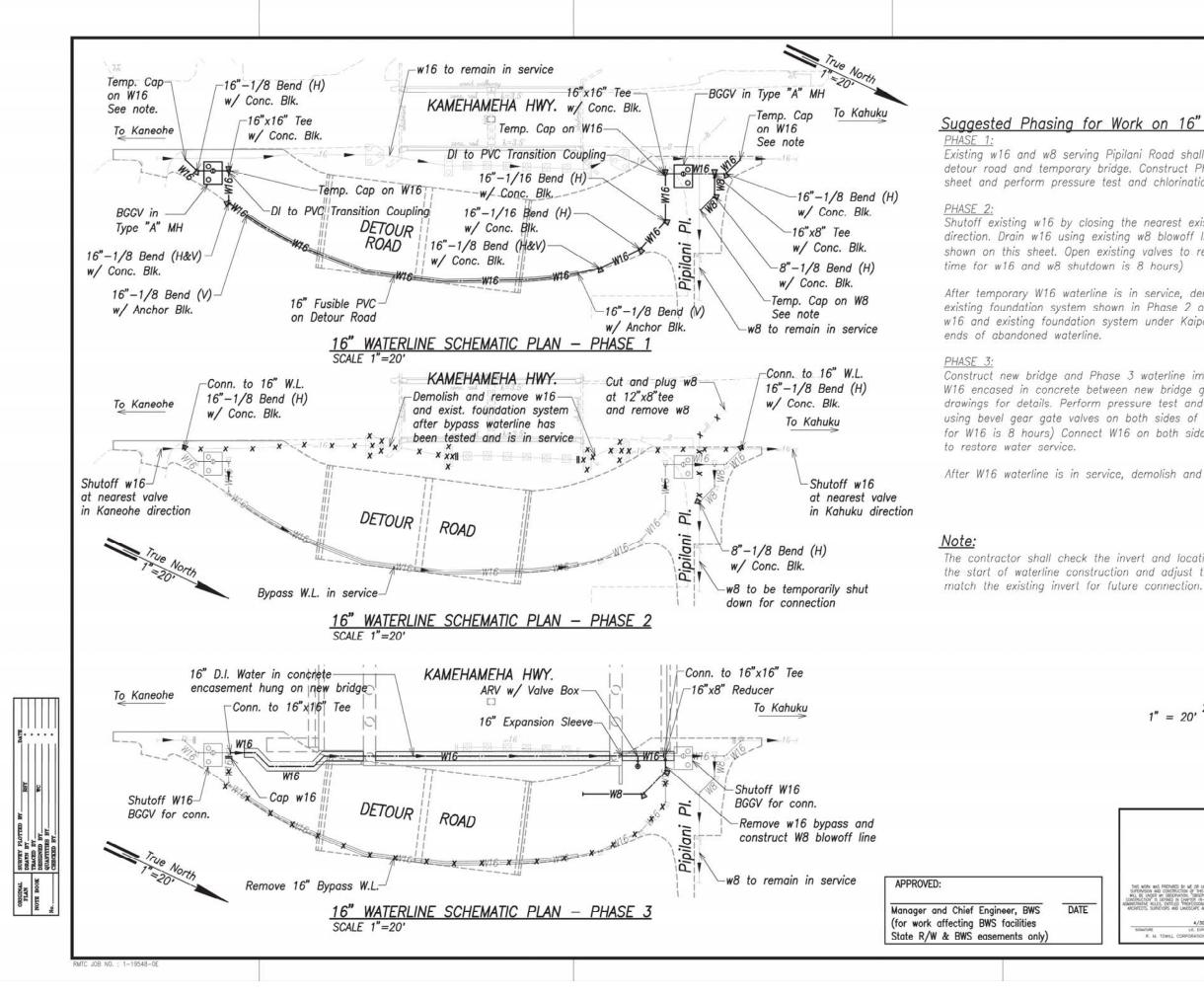



True North 0 Install Type "C-1" Double Service Lateral-(A) Sta. 1246+99.7± Hwy., and reconnect exist. service 0/S 17.5'± Lt. Sta. 1247+26.80 Hwy., 0/S 21.2'± Lt. =Sta. 0+00.0± 12" W.L. See BWS Std. Det., L12, L16 and M3 Relocate 12" Waterline Deflect 4.0° -Cut and plug 1+00 28 LF RCJ Std. 1298+62.3 Hwy exist. w6 0+00 0/8/23.8+99 45 LF RCJ (B) Connect to exist. w12 1-6" Plug Relocate 12" Waterline (D)Deflect 5.0° Sta. 1247+49.3± Hwy., New R/W 1-Hubclamp B 0/S 28.2'± Lt. -w12 to remain -(C) 15.15 w/ strong * (A)(E) =Sta. 0+51.0± 12" W.L. "back tie (c)Materials for conn. Y 1-Conc. block 1290 1-12" Sleeve, 12" long 15 8± LF 12" D.I.P., Cl. 52 E <u>Temp. for testing</u> 1-12" Cap w/4" C.O. 6 -W1 (F)1248+00 240+00 1247+00 1-Conc. block uB pretty -Exist. pedestrian bridge B Kamehameha Hwy. Contractor to verify 101 invert and location (G) Cut and plug exist. w8 at main. Install temporary 12" fusible PVC waterline. Lay Sta. 1247+10.50 Hwy.,temporary 12" waterline on existing pedestrian walkway. Remove valve and box. Salvage frame (C) Connect to exist. w12 0/S 16.70' Lt. In areas outside of the existing pedestrian walkway and and cover. Sta. 1246+96± Hwy., =Sta. 0+10.55 12" W.L. 1-8" Plug provide temporary ADA accessible route, place temporary 0/S 17.4'± Lt. and 1-12" 1/8 Bend (H & TV) 1-Hubclamp w/ strong back tie waterline in shallow open trench and cover with steel Sta. 1248+90± Hwy., 1-Conc. block plates. See Temporary Waterline Notes on this sheet. 1-Conc. block 0/S 19.2'± Lt. See sht. C-29 for Phase when work <u>Materials for conn.</u> 1–12" x 12" Tee 12-INCH WATERLINE PLAN shall be performed. 1249+10 臣 Kam. Hwy. FH Conn. Scale: 1"=20 Notes: 2-12" GV, 150# 1. The existing Finished Grade along w12 2-Valve box w/ cover and toning 1-Conc. block w/ New Kaipapau Exist. ground along w12 28 LF RCJ an independe struct. struts Stream Bridge Water Supply Temp. for testing 1-12" Cap w/4" C.O. 45 LF RCJ 4' Min. shall be imi Cover the water sy 1-Conc. block 10 2 10 W12 Demolish an Contractor to verify W6 3. Dewatering 1 invert and location Approx. location Ir. 202.0520. of exist. arv N12 V Dewatering Approx. location considered of exist. 12" Approx. location compensation Contractor to verify Normal Internation of w12 of 1. The temporary Sinv. and location of w12 of 1. The temporary Starting constru-with the Board 1-12"x12" Tee 1-Conc. Block 1-Conc. Block waterline (w12) of exist. 12" C.I. 12" D.I. waterline waterline (w12) inv. Inv. See Note 3, this sht. 0 inv. and location of w12 B Temporary Bypass Conn. to w12 B 14 -..... 1-12"x12" Tee 8.6± (W12 1-Conc. Block w12 & W12 6.0± The tempora Inv. exist. 12" C.I. 2 Contractor to verify inv. and location of w12 1+46± 0+11 waterline (approx.) unless other 51± Contractor to 1-12" 1/8 Bend (H & TV) 3. (-)10(-)10Conn. to w12 ARV in cage Conn. to w12 1-12" D.I. Coupling 1-12" D.I. Coupling 4. The contract -3.0± W12 & w12 Contractor to verify W12 6.0± ğ. . . . 0+20 1+68.61 8.2± (W12 at all times 111 5. The contract 1-12" 1/8 Bend (BV) 1-12" 1/8 Bend (TV) Conn. to w12 waterline ins invert and location -12" D.I. Coupling W12 3.0± 1+57.48 8.1± (W12 w12 & W12 -3.0± of 12" W Contractor to verify 1-12" 1/8 Bend (BV) (-)20 (-)20invert and location SURFEY PLOTTED DRAFN BY TRACED BY DESIGNED BY QUANTITIES BY CHECKED BY Graphic Scales: 4' 2' 0 8' 4' APPROVED: ORIGINAL PLAN NOTE BOOK Scale in Feet 12-INCH WATERLINE PROFILE Manager and Chief Engineer, BWS DATE 20' 10' 0 20' 40 = 20' (for work affecting BWS facilities Scales: 1"=20' Horiz. State R/W & BWS easements only) 1"=4' Vert. Scale in Feet 2+00 0+00 1+00RMTC JOB NO. : 1-19548-0E

Connect to exist. w12	FED. ROAD DIST. NO.	STATE	PROJ. NO.	FISCAL YEAR	SHEET NO.	TOTAL SHEETS
Sta. 1248+43.9± Hwy., 0/S 24.6'± Lt.	HAWAII	HAW.	BR-083-1(48)	2016	21	142
=Sta. 1+46.0± 12" W.L			0		19	
Materials for conn. 1-12" Sleeve, 12" long	F	Sta.	Connection 1249+10 H	wy.		
8± LF 12" D.I.P., Cl. 5. Temp. for testing	2	0/5	5 15.1'± Lt. 2" x 6" Tapi	nina Te	e (M.I	x FF)
1-12" Cap w/4" C.O.		1-6	2" x 6" Tapı " 1/4 Bend	(BV)		~ ' ' '
1–Conc. block Contractor to verify			" GV (MJ x alve box	FE), CI	. 150	
invert and location			H (Ht.=6'-4" H Extension			
Connect to exist. w12		1-F	H Marker			
Sta. 1248+71.9± Hwy., 0/S 23.3'± Lt.			H Curb guard LF 6" D.I.P.			
=Sta. 1+74± 12" W.L.		1-0	onc. block onc. block w		at atru	.ta
Materials for conn. 1–12" Sleeve, 12" long		See	BWS Std. De	et. FH4	and	
8± LF 12" D.I.P., Cl. 5. 1-12" 1/8 Bend (TV)	2		Profile, see p. for Testin		-37	
Temp. for testing		1-6	" cap w/ 2-	-1/2"	C.O.	
1-12" Cap w/4" C.O. 1-Conc. block		1-0	onc. block			
Contractor to verify						
invert and location						
waterlines shown on the	ese plans	were	located using	recor	d drav	vings all make
information from the Bo ent check by probing th	e waterlin	es and	d coordinatin	g with	the B	oard of
y to ascertain the exact mediately brought to the	locations	of th	e waterlines.	Any	discrep	pancies
vstem.					1	nonk on
d remove existing water for removal of water sys						n No.
		22020 - 220 22				
for installation of the ter incidental to Item No. 62	24.1003 W	ater S	Systems. No	additio	nal sna	III De
n will be provided for d	ewatering.					
Waterline Notes: by waterline shall be con	notructed	teste	d and in-cer	vice n	rior to	
struction of permanent i	water syst	em. T	he contractor	r shall	coord	inate
ard of Water Supply (BW m down time shall be s	S) for shi ix (6) hoi	ut-doi urs un	vn of the 12 less otherwis	2—inch ie appr	waterl	ine. by the
contractor shall be respo	onsible for	provi	ding advance	d noti	ficatior	to
fected by the waterline s by waterline shall not be			more than	two (2) mon	ths
wise approved by the B o provide all fittings, be	WS.					
at high point of tempo	orary wate	rline		_		
tor shall be responsible that meets ADA require		ing sa	fe temporary	pedes	strian	access
tor shall be responsible		ing tro	affic controls	during	g temp	orary
tallation.						
			TMENT OF TR		RTATIO	N
			HIGHWAYS D	VISION		
		_12		ROFIL		
THIS WORK WAS PREPARED BY WE OR LINE	ER MY	-	Kamehameha	111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
AN UP OF AN OTHER TAXES AND	IN OF IS, HARRAN EMEMBERS, HITECTS.	ipapau	i Stream Bri	idge R	eplace	
4/30/ 90%/URE UC 00%	16 <u>Fea</u>		<u>id Project N</u>		11	
R. M. TOWILL CORPORATION		As Not	No. C-20 O		April 201	
					21	

FED. ROAD DIST. NO.	STATE	PROJ. NO.	FISCAL YEAR	SHEET NO.	TOTAL SHEETS
HAWAII	HAW.	BR-083-1(48)	2016	29	142

Suggested Phasing for Work on 12" Waterline:


Construct temporary bypass waterline improvements shown on this sheet and perform pressure test and chlorination. Shutoff existing w12 by closing the nearest existing valves in the Kaneohe and Kahuku direction and make connections to the existing w12. (Note: Maximum allowable time for w12 shutdown is 6 hours.)

Excavate trench and construct shoring for new W12 improvements. Remove portions of existing w12 in concrete jacket required to construct new improvements.

Construct permanent waterline improvements shown on this sheet and perform pressure test and chlorination. Shutoff existing w12 by closing the nearest existing valves in the Kaneohe and Kahuku direction and make connections to the existing w12. Remove W12 bypass waterline, including all gate valves, fittings and concrete blocks on both sides of existing bridge. (Note: Maximum allowable time for w12 shutdown is 6 hours.)

The contractor shall check the invert and location of the existing 12-inch waterline prior to the start of waterline construction and adjust the invert of the new 12-inch waterline to match the existing invert for future connection.

Graphic Scale: 20' 10' 0 20 40 = 20 Scale in Feet DEPARTMENT OF TRANSPORTATION WATERLINE PHASING PLAN Kamehameha Highway Kaipapau Stream Bridge Replacement DATE Federal Aid Project No. BR-083-1(48) R. M. TOWEL CORPOR Scale: As Noted Date: April 2015 SHEET No. C-28 OF SHEETS 29

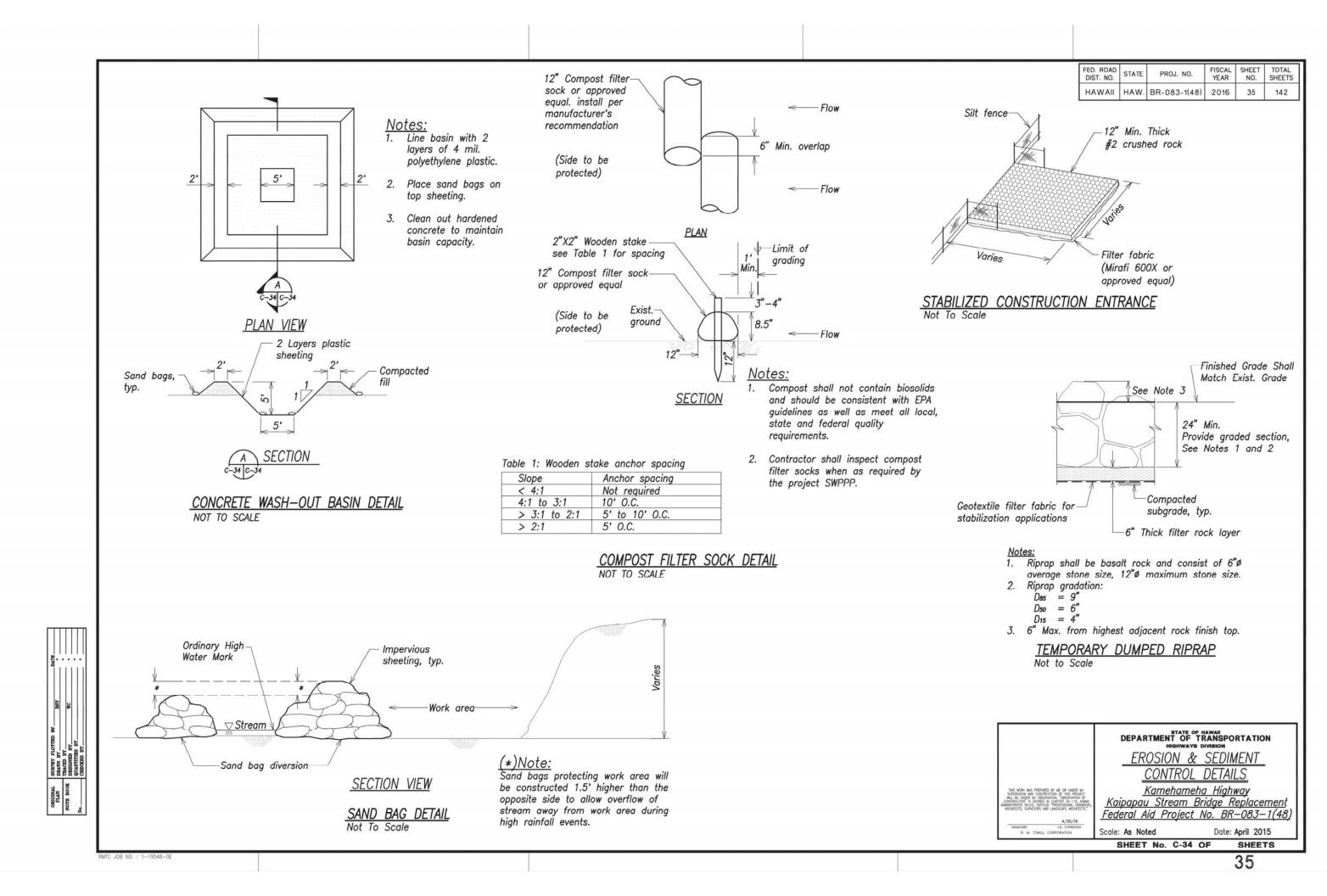
[FED. ROAD DIST. NO.	STATE	PROJ. NO.	FISCAL YEAR	SHEET NO.	TOTAL SHEETS
	HAWAII	HAW.	BR-083-1(48)	2016	30	142

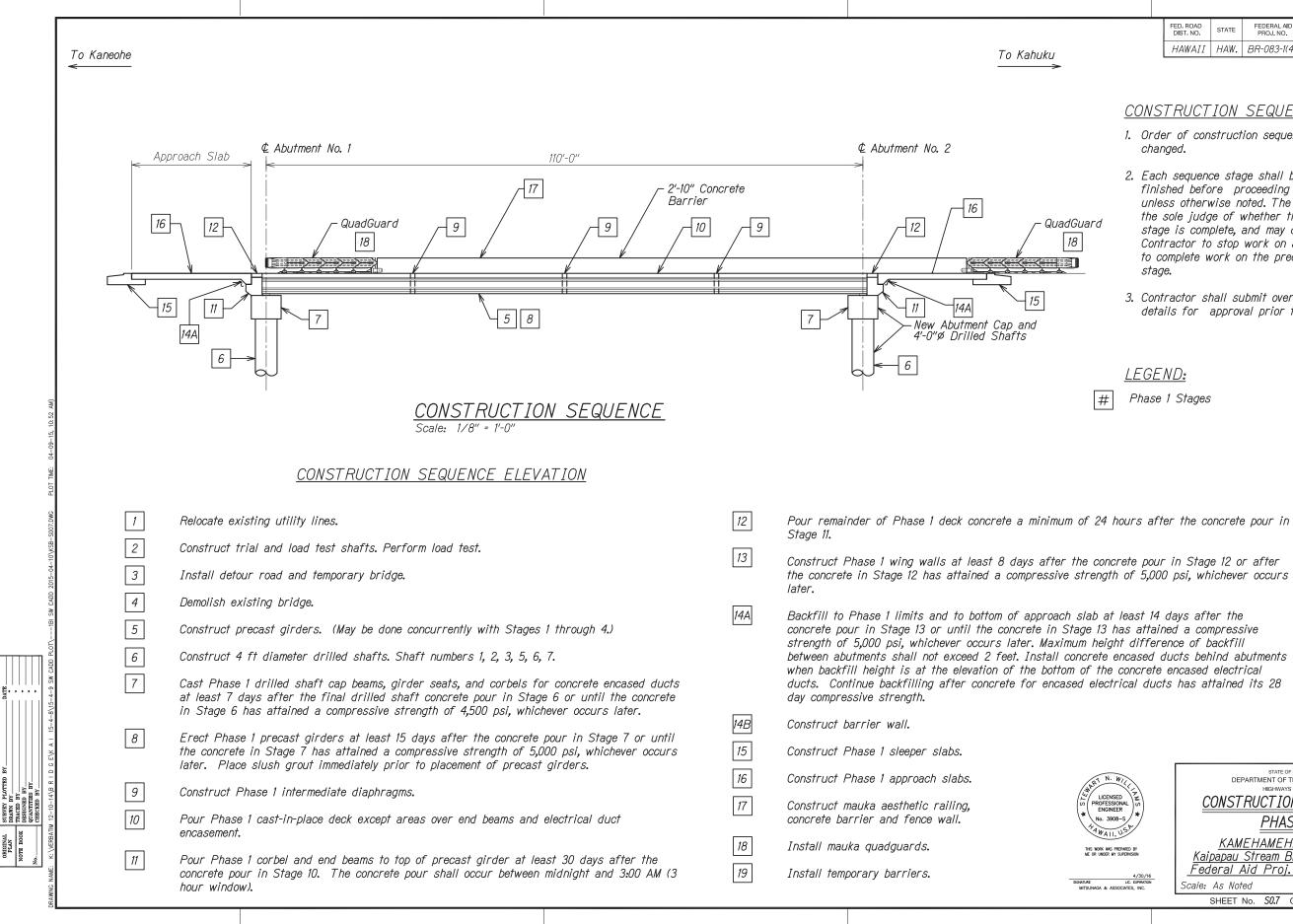
Suggested Phasing for Work on 16" Waterline:

Existing w16 and w8 serving Pipilani Road shall remain in service at all times. Construct detour road and temporary bridge. Construct Phase 1 waterline improvements shown on this sheet and perform pressure test and chlorination.

Shutoff existing w16 by closing the nearest existing valves in the Kaneohe and Kahuku direction. Drain w16 using existing w8 blowoff line. Construct Phase 2 waterline improvements shown on this sheet. Open existing valves to restore water service. (Note: Maximum allowable

After temporary W16 waterline is in service, demolish and remove the existing w16 and existing foundation system shown in Phase 2 on this sheet. Abandon-in-place the existing w16 and existing foundation system under Kaipapau Stream. The contractor shall plug both

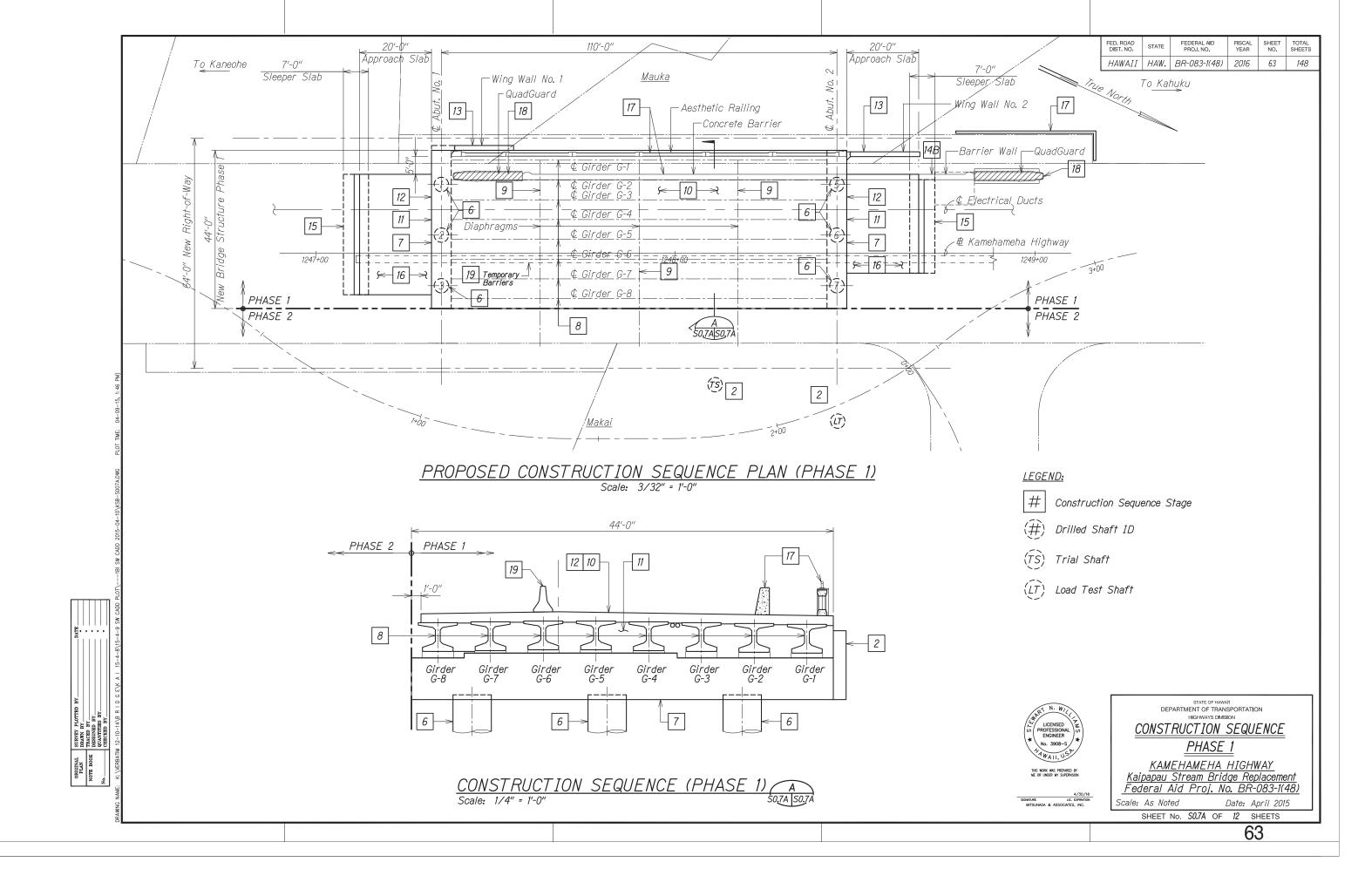

Construct new bridge and Phase 3 waterline improvements, including W8 blowoff line and W16 encased in concrete between new bridge girders, as shown on this sheet. See structural drawings for details. Perform pressure test and chlorination. Shutoff W16 bypass waterline using bevel gear gate valves on both sides of new bridge. (Note: Maximum allowable time for W16 is 8 hours) Connect W16 on both sides of new bridge. Open bevel gear gate valves


After W16 waterline is in service, demolish and remove the bypass waterline.

The contractor shall check the invert and location of the existing 16-inch waterline prior to the start of waterline construction and adjust the invert of the new 16-inch waterline to

Graphic Scale: 20' 10' 0 40' 20 Scale in Feet

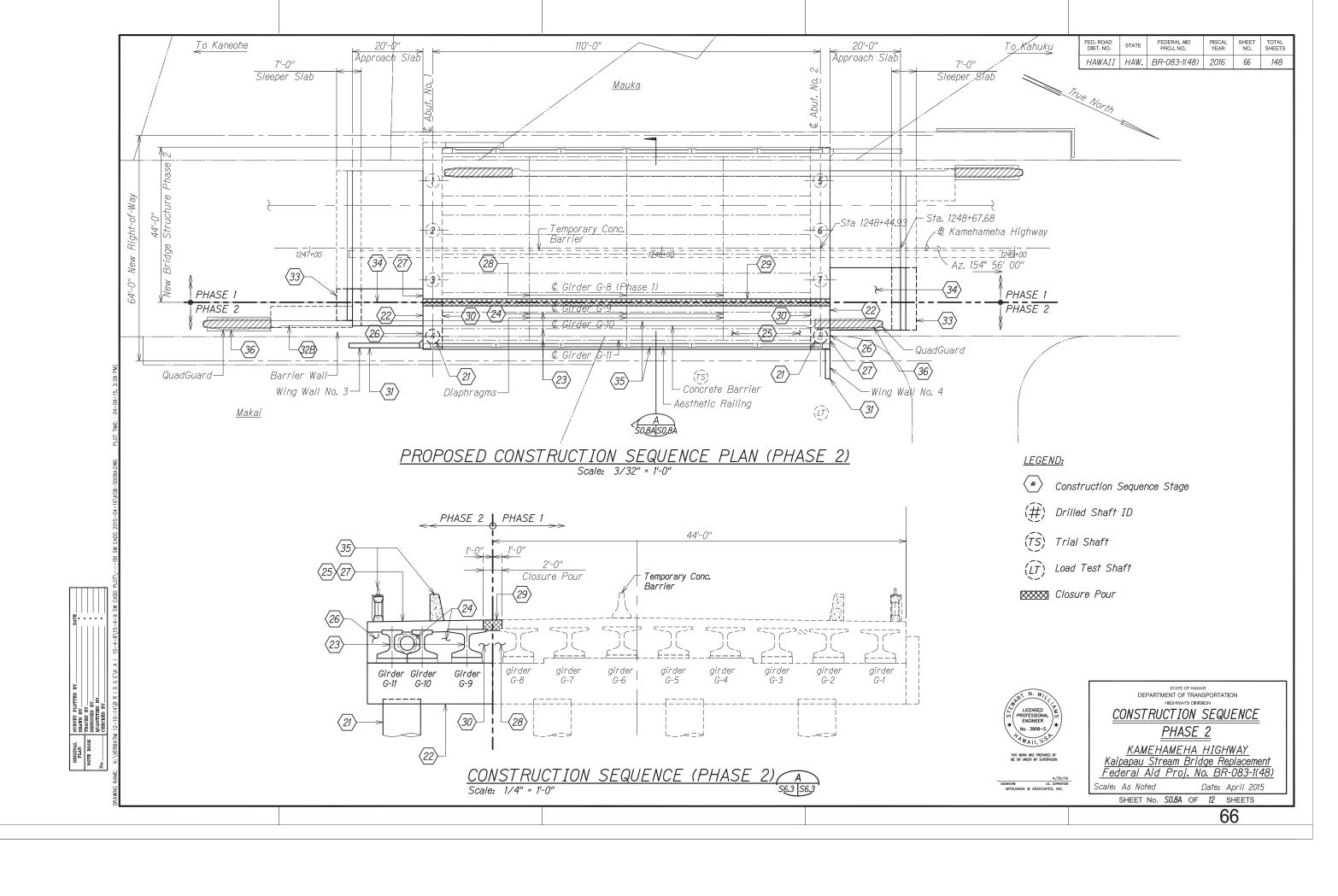
		STATE OF HAWAII DEPARTMENT OF TRANSPORTATION HIGHWAYS DIVISION				
		16" WATERLINE	PHASING PLAN			
-	THE WORK WAS PRETVED BY WE OR UNDER WY SHERMEDIA AND CONSTRUCTION OF THE PROJECT WILL BE UNDER WY DESCRIPTION OF MELLER UNDER THE DESCRIPTION OF AMMERISTIAN ELECT. SHITLE PROJECTION OF AMMERISTIAN ELECTRICITY OF AND LARGE AND HECTS." 4/30/16	<u>Kamehamel</u> <u>Kaipapau Stream E</u> Federal Aid Project	Bridge Replacement			
	SONATURE LLC. EXPRATION R. M. TOWILL CORPORATION	Scale: As Noted	Date: April 2015			
		SHEET No. C-29	OF SHEETS			


PL BY

		FED. ROAD DIST. NO.	STATE	FEDERAL AID PROJ. NO.	FISCAL YEAR	SHEET NO.	TOTAL SHEETS
ahuku		HAWAII	HAW.	BR-083-1(48)	2016	62	148
- QuadGuard [18] 15] nd	 Orda chai Eac finis unle the stag Coni to c stag Coni 	er of con nged. h sequend shed befo sole judg ge is com, tractor to omplete w ge.	struct ce sta vre pi vise n plete, o stop vork o hall su	<u>SEQUEN</u> tion sequence ge shall be roceeding to toted. The Er whether the and may diru work on a s n the precee ubmit overwe val prior to to	e shall comple the ne ngineer sequer ect the sequence ding s	not b tely ext sta will noce e ce sta requent ehicula	age be ge ce
#	<u>LEGE</u> Phase	<u>ND:</u> 1 Stages					

the concrete in Stage 12 has attained a compressive strength of 5,000 psi, whichever occurs

between abutments shall not exceed 2 feet. Install concrete encased ducts behind abutments


LICENSED PROFESSIONAL ENGINEE WALL, USENSED PROFESSIONAL NO. 3908-5 WALL, USENSED BUILDER MESTREASED BUILDER MESTREASED MESTREASE & ASSOCIATES, INC.	STATE OF HAWAM DEPARTMENT OF TRANSPORTATION HIGHWAYS DIMBION <u>CONSTRUCTION SEQUENCE</u> <u>PHASE 1</u> <u>KAMEHAMEHA HIGHWAY</u> <u>Kaipapau Stream Bridge Replacement</u> <u>Federal Aid Proj. No. BR-083-1(48)</u> <u>Scale: As Noted</u> Date: April 2015 SHEET NO. 50.7 OF 12 SHEETS
	62

Stri	uctural			Refe	rences			Waterline	Exist Bridge	Detour	Detour Off Pea			FED. ROAD DIST. NO. STATE PROJ. NO. FISCAL YEAR SHEE NO. HAWAII HAW. BR-083-1(48) 2016 64
Const St	truction tage	Description	Civil	Electrical	Geote	ech.	Structural	Work	Open	Open	Lane Closures Anticipated		Remarks	<u>CONSTRUCTION SEQUENCE NOTES:</u>
Mobiliz		 Prior to Site Mobilization, the Contractor shall submit required BMP's and other Municipal and National permit applications as indicated in the project Plans, Special Provisions and Specifications. The Contractor shall submit Prefabricated Steel Beam Bridge Structural Computations and Erection drawings to the Owner for Review and Approval Prior to Fabrication. 	Civil Sequence See C-10. See Civil[7]				Structural Sequence SO. 7, SO. 7A, SO. 8, SO. 8A		Exist Bridge Open to Traffic					 Order of construction sequence shall changed unless authorized in writing Engineer. Each sequence stage shall be completed
	1	 Install approved BMP measures. Relocate Existing overhead utility lines. Install temporary 12" fusible PVC waterline on existing (upstream) pedestrian walkway. 	C–15,16,17, C–20, C–28, see Civil [2]	E-8, E-9, E-10, E-11				Temporary 12" fusible PVC waterline						finished before proceeding to the ne unless otherwise noted. The Engine be the sole judge of whether the se stage is complete, and may direct t Contractor to stop work on a seque
	2	1. Construct Trial and Load Test shafts * 2. Perform Load Test. Demobilize drilled shaft equipment off site.	See Civil 3		Special di equipmen		<i>S1.1, S8.3</i>					Pro	pecial rovisions potion 511	stage to complete work on the prec sequence stage. 3. Contractor shall submit overweight v
	3	 Install Detour Pier, Abutments and Temporary Bridge. Construct Civil Phase 1 waterline Improvements C-29; C-30. Construct Detour Approach Retaining Wall, Fills and Roadway - chainlink fence see C-23. Construct Civil Phase 2 waterline improvements-see C-29; C-31. 	See Civil 4 C-23, C-29, C-30, C-31, C-32	E-10, E-11, E-15	Excavatic Bracing- Prov. 20.	on Spec. 5*	512.1, 512.2 512.3, 512.4 512.5	Civil Phase 1 & 2 (W16) waterline work-see C-29, C-30.		Detour Open to Traffic		Bra ant ups	rcavation acing ticipated stream of tour.	details for approval prior to their us 4. Construction shall be conducted suc no construction debris, wash water contaminants shall enter the Stream 5. Closing of the Prefabricated Steel Bo
	4	1. Relocate existing water line W12 (prior to existing bridge demolition) – see C-20, C-28. 2. Demolish existing bridge.	See Civil 5 C-20, C-28		Excavatio Bracing- Prov. 203	on Spec. 5*	<i>S2.1, S2.2</i>	Relocate Exist W12 waterline C-20, C-28.	Exist Bridge Demolition			ups	cc. Bracing stream of isting.	Bridge Structure: (a) If for any reason or at any time Prefabricated Beam Bridge Struc
	5	Construct precast girders. (May be done concurrently with stages 1 through 4.)	See Civil 6				S4.x series							ability to safely carry traffic is in question, the Contractor shall be
	6	Construct 4 ft. diameter drilled shafts. 1, 2, 3, 5, 6, 7. *			Special di equipmen	t* .	S1.1,S1.2,S6.1, S6.2,S8.1,S8.2					Śe	ecial Provisions ection 511	responsible for immediately takin actions necessary to protect the
	7	Cast phase 1 drilled shaft cap beams, girder seats, and corbels for concrete encased ducts at least 7 days after the final drilled shaft concrete pour in stage 6 or until the concrete in stage 6 has attained a compressive strength of 4,500 psi, whichever occurs later.			Structure Excavatio Bracing p Spec Pro	n ber v 205	SO.7, SO.7A, S6.x series					Stri	rks [7] through are PHASE 1. suctural see [20] PHASE 2	by closing, repairing and reopen Prefabricated Steel Truss Bridge. When the Contractor closes the (b) Prefabricated Steel Beam Bridge
	8	Erect phase 1 precast girders at least 15 days after the concrete pour in stage 7 or until the concrete in stage 7 has attained a compressive strength of 5,000 psi, whichever occurs later. Place slush grout immediately prior to placement of precast girders.			Required Makai Lin	nit	SO. 7, SO. 7A, S1.2, S1.3, S6., series							Structure, the Contractor shall immediately notify the Engineer appropriate Law Enforcement Ag Closing of the Prefabricated Stee
	9	Construct phase 1 intermediate diaphragms.					SO. 7, SO. 7A, S5.x series							(c) Bridge shall be included as incid
	10	Pour phase 1 cast-in-place deck except areas over end beams and duct encasement.					50.7,50.7A 51.6,53.1,53.2							Maintenance of Traffic Control.
	11	Pour phase 1 end beams to top of precast girder and corbel at least 30 days after the concrete pour in Stage 10. The concrete pour shall occur between midnight and 3:00 AM (3 hours).					S0.7,S0.7A, S6.x series					Pla	oncrete acement † Night	6. The Contractor shall phase 16 inch (W16) to allow no more than 8 hou down time. Liquidated Damages of
PHASE	12	Pour remainder of phase 1 deck concrete a minimum of 24 hours after the concrete pour in stage 11.					\checkmark							\$100,000 per day will be imposed in Contractor exceeds the 8 hour rest.
7	13	Construct phase 1 wing walls at least 8 days after the concrete pour in stage 12 or after the concrete in stage 12 has attained a compressive strength of 5,000 psi, whichever occurs later.					S0.7,S0.7A, S7.x series				Lane Closure Duration Approx 3 we each abutme	eks		l
STRUCTUR	14	Backfill to phase 1 limits and to bottom of approach slab and at least 14 days after the concrete pour in Stage 13 or until the concrete in Stage 13 has attained a compressive strength of 5,000 psi, whichever occurs later. Maximum height difference of backfill between abutments shall not exceed 2 feet. Install concrete encased ducts when backfill height is at the elevation of bottom of concrete encased ducts. Continue backfilling after concrete for encased ducts has attained its 28 day compressive strength.		Signal Corps Work E-1, E-5 E-12, E-13, E-16	5		50.7,50.7A,56.x 59.x				with Further Lane Closure Duration Approx 2 we each approad	eks		
	15	Construct phase 1 sleeper slabs.												
	16	Construct phase 1 approach slabs.		Signal Corps Work E-1, E-5 E-12,E-13,E-i			\checkmark				\downarrow			
	17	Construct mauka aesthetic railings and concrete barrier.	ļ											
	18	Install mauka quadguards.											\downarrow	
	19	Install Temporary Barriers and Temporary Striping on PHASE I of New Bridge.	See Civil for Barriers	,									LICENSED PROFESSIONAL BOOK NS PREVEND BY MK OF UNDER MY SHERMSON HE OR UNDER MY SHERMSON	DEPARTMENT ^{STATE OF HAWAII} DEPARTMENT ^{STATE} OF TRANSPORTATIO HIGHWAYS DIVISION <u>OVERALL CONSTRUCTION SEQUI</u> <u>STRUCTURAL PHASE 1</u> <u>Kamehameha Highway</u> <u>Kaipapau Stream Bridge Replac</u> <u>Federal Aid Project No. BR-083</u>
1												SIGNA		

			* • · · · · · · · ·
	Approach Slab		∉ Abutment No. 1 →
			0" Concrete rier
	(34) (30)(27) - QuadGuard - (24)(28) - (24)(28)	25	
		//	
[<i>V</i>	
33	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		26 30 New Abutment Cap 4'-0"Ø Drilled Sha
	<u>CONSTRUCTION SEQUENC</u> Scale: 1/8" = 1'-0"	<u>E</u>	Ι
	LEGEND:		
$\langle \# \rangle$	Phase 2 Stages		
	<u>CONSTRUCTION SEQUENCE ELEVATION</u>		
$\langle 20 \rangle$	Partially remove temporary bridge as required to construct Phase 2 of Kaipapau Stream Bridge Construct 4 ft diameter shafts —Shaft nos. 4 and 8.	<i>(29)</i>	Pour Phase 2 cast-in-place deck closure except over deck closure pour shall be VESLMC. (See Special Pr
$\langle 21 \rangle$ $\langle 22 \rangle$	Cast Phase 2 drilled shaft cap beams, girder seats, and corbels for concrete jacketed	$\langle 30 \rangle$	Pour Phase 2 corbel and end beam closure from top Material for end beam closure pour shall be VESLM
	waterline at least 7 days after the final drilled shaft concrete pour in Stage 21 or until the concrete in Stage 21 has attained a compressive strength of 4,500 psi, whichever occurs later.	$\langle 31 \rangle$	
< <u>23</u> >	Erect Phase 2 precast girders at least 15 days after the concrete pour in Stage 22 or until the concrete in Stage 22 has attained a compressive strength of 5,000 psi, whichever occurs later. Place slush grout immediately prior to placement of precast girders.	<32A>	Backfill to bottom of approach slab at least 14 days until the concrete in stage 31 has attained a compre
<u>\</u> 24	Construct Phase 2 intermediate diaphragms between girders G-9 and G-10, install dowels connecting G-10 and G-11, and install W16 with light-weight concrete jacket between girders G-10 and G-11.		occurs later. Maximum height difference of backfil. Install jacketed waterline behind abutments when ba bottom of the jacketed waterline. Continue backfillin attained its 28 day compressive strength.
<i>(25)</i>	Pour Phase 2 cast-in-place deck except areas over end beams and closure pour.	32B	Construct Barrier Wall.
(26)	Pour Phase 2 corbel and end beams (except at closure pour) to top of precast girder at least 30 days after the concrete pour in Stage 25. The concrete pour shall occur between midnight	33	Construct Phase 2 sleeper slabs.
_	and 3:00 AM (3 hour window).	$\langle 34 \rangle$	Construct Phase 2 approach slabs.
27	Pour remainder of Phase 2 deck concrete (except at closure pour) a minimum of 24 hours after the concrete pour in Stage 26.	35	Constuct Makai aesthetic railing and concrete barrier.
<i>\</i> 28 <i>\</i>	Pour Phase 2 intermediate diaphragms between girders G-8 and G-9 at least 4 days after the	$\langle 36 \rangle$	Install Makai quadguards.
<u> </u>	concrete pour in Stage 27.		

	FED. ROAD DIST. NO.	STATE	FEDERAL AID PROJ. NO.	FISCAL YEAR	SHEET NO.	TOTAL SHEETS
nuku	HAWAII	HAW.	BR-083-1(48)	2016	65	148
1. Ord chai 2. Eac finis unle the stag Con	er of con nged. h sequend shed befo sso otherv sole judg ge is com, tractor to	Sort of the state	<u>SEQUEN</u> ion sequence ge shall be roceeding to oted. The Er whether the and may dir work on a s n the precee	e shall comple the ne ngineer sequen sequen	not b tely ext sta will nce e ce sta	age be ge
	tractor si		ubmit overwe val prior to t			ar
r end beams. Material rovisions). p of drilled shaft cap i IC. (See Special Provis	beam to t					
the concrete pour in S rength of 5,000 psi, wh						
s after the concrete pou essive strength of 5,000 Il between abutments sh ackfill height is at the ing after concrete for j.) psi, whi all not ex elevation	ichever xceed of the	- 2 feet. ?			
		DEI	STATE OF HAWA PARTMENT OF TRANS HIGHWAYS DMS	SPORTATIC	DN	
LICENSED PROFESSIONAL ENGINEER ENGINEER WAILI, US THE WORK MIS PREPARED BY ME ON UNDER WIS SUPERMISSION	<u>Kai</u> <u>Fea</u> Scale:	<u>KAM</u> papau		2 HIGHV ge Rep b. BR- Date: A	VAY blaceme 083-1(+	<u>48)</u>

	uctural truction	KAIPAPAU STREAM BRIDGE			rences		Waterline		e Detour	Detour Off P Lane Closure
	tage		Civil	Electrical	Geotech.	Structural	Work	Open	Open	Anticipatea
	20>	 Open PHASE I of New Bridge to traffic. Close Temporary Bridge and Detour Roadway to traffic. Remove Mauka portion of Temporary Bridge Only (Remainder to remain in place to support construction equipment for construction of PHASE 2 portion of New Bridge and to support temporary W16 until Final W16 is constructed). 				<i>S0.8, S0.8A</i>		PHASE I of New Bridge Open to Traffic to allow Detour Closure	Close Detour and Remove Limited Portion of Temporary Bridge	Not Applicable
	$\langle 21 \rangle$	Construct 4 ft. diameter drilled shafts – Shaft nos. 4 and 8.	See Civil 6		Special drilling equipment*	51.1, 51.2, 56. 56.2, 58.1, 58.	2		Detour Closed	1
	<i>22</i>	Cast Phase 2 drilled shaft cap beams, girder seats, and corbels for concrete jacketed waterline at least 7 days after the final drilled shaft concrete pour in stage 21 or until the concrete in stage 2. has attained a compressive strength of 4,500 psi, whichever occurs later.	1		Structure Excavation Bracing per Spec for 205 Required at Approaches.	SO.8, SO.8A, S6.x series				
	<i>23</i>	Erect Phase 2 precast girders at least 15 days after the concrete pour in stage 22 or until the concrete in stage 22 has attained a compressive strength of 5,000 psi, whichever occurs later. Place slush grout immediately prior to placement of precast girders.				S0.8, S0.8A, S1.2, S1.3, S6.x series	Civil Phase 3 (W16) waterline improvement seeC-29,C32			
	24	Construct Phase 2 intermediate diaphragms between girders G-9 and G-10 and light-weight W16 concrete jacket between girders G-10 and G-11.	C-29, C-30			SO.8,SO.8A, S5.x series				
	<i>25</i>	Pour Phase 2 cast-in-place deck except areas over end beams and closure pour.				S0.8,S0.8A S1.6,S3.1,S3.2				
2	(26)	Pour Phase 2 end beams (except at closure pour) to top of precast girder and corbel at least 30 days after the concrete pour in Stage 25. The concrete pour shall occur between midnight and 3:00 AM (3 hours).				50.8,50.8A, 56.x series				
PHASE	27 >	Pour remainder of Phase 2 deck concrete (except at closure pour) a minimum of 24 hours after the concrete pour in stage 25.				\checkmark				
	28 >	Pour Phase 2 intermediate diaphragms between girders G–8 and G–9 at least 4 days after the concrete pour in stage 27.								
STRUCTURAL	29 >	Pour Phase 2 cast-in-place deck closure except over end beams. Material for cast-in-place deck closure pour shall be VESLMC.								
0)	30 >	Pour Phase 2 end beams closure from top of drilled shaft cap beam to top of deck. Material for end beam closure pour shall be VESLMC.								
	$\langle 31 \rangle$	Construct Phase 2 wing walls at least 8 days after the concrete pour in stage 30 or after the concrete in stage 30 has attained a compressive strength of 5,000 psi, whichever occurs later.				SO.8,SO.8A, S7.x series				
	<i>32</i>	Backfill to bottom of approach slab at least 14 days after the concrete pour in Stage 31 or until the concrete in Stage 31 has attained a compressive strength of 5,000 psi, whichever occurs later. Maximum height difference of backfill between abutments shall not exceed 2 feet. Install jacketed waterline when backfill height is at the elevation of bottom of the jacketed waterline. Continue backfilling after concrete for jacketed waterline has attained its 28 day compressive strength.				50.8,50.8A,56.x 59.x				
	$\langle 33 \rangle$	Construct Phase 2 sleeper slabs.								
	34	Construct Phase 2 approach slabs.								
	<i>35</i>	Construct Makai aesthetic railings and concrete barrier.								
	(36)	Install Makai guadguards. Remove Detour; construct stream hardening. Remove Temporary Barriers at New Bridge. Open Phase 1 and Phase 2 of New Bridge to traffic.	See Civil Z thru Z	Permanent Electrical Plan See E-12,E-13 E-14	Ş		Remove tem W16 at Closed Detour	p PHASE I and PHASE 2 of New Bridge Open	Remove Remainder of Detour	

RMTC JOB NO. : 1-19548-0E

		FED. ROAD DIST. NO.	STATE	PROJ. NO.	FISCAL YEAR	SHEET NO.	TOTAL SHEETS
^r Peak ures	Remarks	HAWAII	HAW.	BR-083-1(48)	2016	67	148
	Remarks Close Detour; Open PHASE 1 of New Bridge: Start Construction of PHASE 2 of New Bridge *Special Provisions Section 511 Special Provisions Section 205 Concrete Placement At Night	1. Orn ch En 2. Ea fin un be sta Co sta se 3. Co de 4. Co no co 5. Cla Br (o, (b, (b, (c, (c, (c, (c, (c, (c, (c, (c, (c, (c	der of anged gineer. ich seq ished b less of age is artracto age to quence ntracto tails fo nstructo constructo constructo poing of dige St) If for Brefa by clo Prefa Structo imme appro) Closin Bridge Maint e Conto (00,000	<u>TION SEQUEN</u> construction si unless authoriz unless authoriz before proceed therwise noted. ole judge of wi complete, and or to stop work complete work stage. or shall submit or approval prior tion shall be con- ruction debris, ants shall ente f the Prefabric fructure: any reason or bricated Beam v to safely carri- tion, the Contra- tosing, repairing bricated Steel the Contractor bricated Ste	equence red in w hall be ing to the The E half be in The E half of the or to the or to the or to the or to the or to the or to the or the S ated St ated St ated St ated St ated St ated St ated St correct and re Truss B correct and re frice Cont ase 16 a than b correct at any bricket and re frice Cont ase 16 a than b correct and correct as the correct as the corect as the correct as the correct	shall r rriting b complet he next ingineer the sequence preced ight vek eir use. d such vater or tream d such vater or tream cate or tream tream tream tream tream time, Structu. c is in all be taking t the p opening ridge hall neer an t Agen t Agen t Steel inciden rol. inch was ses of sed if t	y the tely stage will uence e eding nicular that other Waters. m the re's the the the cy. Beam tal to aterline of the
	N. W//- UCENSED UCENSED N. 3308-5 4 4 4 4 4 4 4 4 4 4 4 4 4	<i>Ka</i> <i>Fed</i> Scale:	<u>VERAL</u> ipapau eral A AS NO	TTENT OF HA HIGHWAYS DI HIGHWAYS DI STRUCTURAL Kamehameha J Stream Bri No. SO.8B O	TION S <u>PHASE</u> <u>Highv</u> <u>dge Re</u> <u>lo. BR</u> - Date:	<u>SEQUEI</u> <u>2</u> vay eplacei	<u>ment</u> 1 <u>(48)</u> 15
						6/	

Attachment C Source Water Quality Assessment (Items G.3., G.8., & G.9.)

Source Water Quality Assessment for Kaipapa'u Stream Bridge replacement project Hau'ula, O'ahu

January 10, 2019	D	RAFT	A	ECOS No. 1060B
Allen Cattell <i>AECOS</i> , Inc. 45-939 Kamehameha Highway, Kāne'ohe, Hawai'i 96744 Phone: (808) 234-7770 Fax: (80		Email: aecos@aecc	s.com	

Introduction

Hawai'i Department of Transportation (HDOT) will be replacing Kamehameha Highway-Kaipapa'u Stream Bridge (herein referred to as the "Project") in Hau'ula on the windward coast of O'ahu (Figure 1). *AECOS*, Inc. was contracted¹ to collect and analyze water samples and provide a Source Water Quality Assessment (SWQA) for potential environmental impacts from dewatering activities associated with the Project.

Kaipapa'u Stream (State Perennial Stream ID No. 3-1-10) is an interrupted perennial stream that originates in the northern part of Ko'olau Mountain and descends to the Pacific Ocean from an elevation of around 2600 ft (792 m). An interrupted perennial stream is one that flows year-round in the upper reaches and usually intermittently at lower elevations. Kaipapa'u Stream flows under the bridge at Kamehameha Highway and discharges at the coastline between Kaipapa'u Point and Hau'ula Beach Park. Kaipapa'u Stream is listed on the 2018 State of Hawaii Water Quality Monitoring Assessment Report (HDOH, 2018) as having "insufficient data" to make a determination as to whether the stream is meeting state water quality criteria.

¹ This report was prepared for R.M. Towill Corporation and may become part of the public record.

Methods

Water quality samples were collected on November 26, 2018 under Kaipapa'u Stream Bridge (Sta. Bridge; Figure 2). Temperature, conductivity, pH, and dissolved oxygen (DO) were measured in the field. Samples for turbidity and total suspended solids (TSS) were collected in appropriate containers, stored on ice, and delivered to *AECOS* Inc. laboratory on O'ahu for analyses (*AECOS* Log No. 36914). Samples for nutrients (nitrate+nitrite, ammonium, total nitrogen, total phosphorus), oil and grease, 32 polynuclear aromatic hydrocarbons, 30 pesticides/PCBs, and 51 volatile organics were collected in appropriate containers, stored on ice, and shipped to Calscience Environmental Laboratories for analyses. Sample collection techniques are detailed in Appendix A. Samples were analyzed according to methods listed in Table 1.

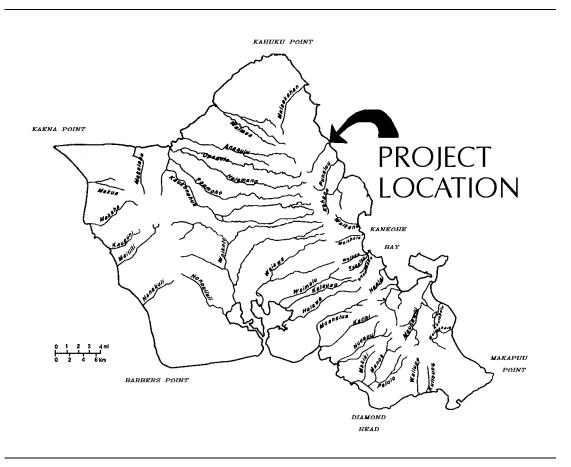


Figure 1. Project location on the Island of O`ahu.

Figure 2. Location of water quality sampling station: Sta. Bridge.

Results

Laboratory quality assurance/quality control (QA/QC) statements for all analyses of water quality samples are provided in Appendix A. Table 2 presents results of the November 26, 2018 sampling event for physical parameters, inorganic nutrients, turbidity, TSS, and oil and grease.

Water quality samples were also analyzed for 32 polynuclear aromatic hydrocarbons, 30 pesticides/PCBs, and 51 volatile organics. Laboratory results for these 113 compounds were all "not detected" and therefore are not expected to occur during proposed bridge construction.

Stream water temperature and conductivity values were typical for freshwater streams. pH levels were slightly acidic and DO saturation levels were low. Particulates (turbidity and TSS) were both low for flowing streams. Ammonium was not present in detectable amounts, whereas nitrate+nitrite and total

nitrogen concentrations were elevated. Total phosphorus was typical of stream waters. "Oil and grease" was not present in detectable concentrations.

Analysis	Method	Reference
Temperature	SM 2550 B	SM (1998)
рН	SM 4500 H+	SM (1998)
Dissolved Oxygen	YSI meter/SM 4500-O G	SM (1998)
Conductivity	SM 2510-B	SM (1998)
Turbidity	EPA 180.1 Rev 2.0	USEPA (1993)a
Total Suspended Solids (TSS)	SM 2540 D	SM (1999)
Ammonia	SM4500 NH3 B/C	SM (1999)
Nitrate + Nitrite	SM 4500 NO3-E	SM (1999)
Kjeldahl Nitrogen	EPA 351.2	USEPA 1993b
Total Nitrogen	By calculation	
Total Phosphorus	SM 4500 P B/E	SM (1998)
Oil & Grease	EPA 1664A	USEPA (1999)
Polynuclear Aromatic Hydrocarbons	EPA 610	USEPA (1995)
Pesticides & PCBs	EPA 605	USEPA (1995)
Volatile Organics	EPA 624	USEPA (1995)

Table 1. Methods used in analyses of water sampled from Well Site.

Table 2. Results for selected water quality parameters measured at Sta. Bridge on November 26, 2018.

Temp. (°C)	Salinity (PSU)	Conduct. (µmhos/cm)	рН	DO sat. (%)	Turbidity (ntu)
24.7	nd^\dagger	357	6.74	62	0.42
TSS	Ammonium	Nitrate + Nitrite	Total N	Total P	Oil & Grease
(mg/l)	(µgN/I)	(μg N/I)	(μg N/I)	(μg P/I)	(mg/l)
0.6	nd	540	710	28	nd
d = not c	letected	-			

Assessment

Water quality data collected from Kaipapa'u Stream on November 26 (see Table 2) can be compared to certain water quality criteria established for streams (Table 7).. Criteria for turbidity, TSS, and nutrients are based on geometric means not to exceed specific criterion values. Since geometric means require a minimum of three separate sampling events per station, our single event results cannot be compared with state geometric mean criteria. Nevertheless, these criteria are useful guides for what HDOH regards as good water quality. Our results for physical parameters (temperature, DO saturation and pH) can be evaluated for compliance with state criteria.

Parameter Total Nitrogen (µg N/L)	Geometric Mean value not to exceed this value 250.0* 180.0**	Value not to be exceeded more than 10% of the time 520.0* 380.0** 600.0 ³	Value not to be exceeded more than 2% of the time 800.0*
(μg N/L)	70.0*	180.0*	300.0*
(μg N/L)	30.0**	90.0**	170.0**
Total Phosphorus	50.0*	100.0*	150.0*
(µg P/L)	30.0**	60.0**	80.0**
Total Suspended Solids	20.0*	50.0*	80.0*
(µg/L)	10.0**	30.0**	55.0**
Turbidity	5.0*	15.0*	25.0*
(NTU)	2.0**	5.5**	10.0*

Table 3. Water quality criteria applicable to streams (HDOH, 2014a).

* Wet season – November 1 through April 30

** Dry season - May 1 through October 31

Other "standards":

- pH units are not to deviate more than 0.5 units from ambient and are to be neither lower than 5.5 nor higher than 8.0.

- Dissolved oxygen is not to decrease below 80% of saturation.
- Temperature is not to vary more than 1C° from ambient conditions.

- Specific conductance is to be less than 300 $\mu\text{mhos/cm}.$

Criteria for specific conductance and DO saturation did not meet state criteria on November 26, 2018 at Sta. Bridge. pH values were within criteria specified for streams. The criterion for temperature is based on "deviations from ambient conditions" and essentially pertains to discharges that might cause deviations. The cause of elevated nitrate+nitrite and total nitrogen concentrations are unknown. Particulates, ammonium, and total phosphorus were low at Sta. Bridge.

Dewatering effluents during bridge replacement construction will likely result in increases in turbidity and TSS levels and nutrient (nitrogen and phosphorus moieties and will not meet NPDES requirements for discharge into state waters. It is also likely that oil and grease will be present in dewatering effluents due to machine operations. No treatment of polynuclear aromatic hydrocarbons, pesticides, PBCs or volatile organics will be required due to lack of presence at the Project site.

Potential dewatering treatment options for the Project include:

- 1) Pumping to an on-site settling basin, allowing for percolation back into the ground. This is the most economical option, but depends on available openground for a settling basin, groundwater intrusion rate, and percolation rate at a selected settling basin site. Percolation rate could be increased by prefiltration of particulates. If available ground area is limited, back trenching may be a viable option;
- 2) Transport of dewatering effluents off-site to a state-approved landfill. This option would be feasible if only a small amount of dewatering effluents is generated.

It should be noted that there are no practical treatment methods available to reduce nutrient concentrations to levels that would permit direct discharge into state waters such as Kaipapa'u Stream.

Conclusions

It is likely that dewatering will generate effluents that will result in increases of turbidity and TSS levels as well as nutrient (nitrogen and phosphorus moieties) concentrations that exceed state standards. Oil and grease may also exceed state standards due to equipment operations during the dewatering process, rendering these effluents unsuitable for direct discharge into state waters. Potential dewatering treatment options for the Project include percolation via settling basins or back-trenching or transport and disposal in a state-approved landfill.

Water quality impacts generated by construction should be temporary and minimal if effective treatment and BMPs are employed. An Applicable Monitoring and Assessment Plan (AMAP) should be developed to monitor effectiveness of best management practices (BMPs) deployed during construction.

References

- Hawai'i Department of Health (HDOH). 2014. Hawai'i Administrative Rules, Title 11, Department of Health, Chapter 54, Water Quality Standards. State of Hawai'i, Department of Health. 86 pp.
- _____. 2018. 2018 State of Hawaii Water Quality Monitoring and Assessment Report: Integrated Report to the U.S. Environmental Protection Agency and the U.S. Congress Pursuant to §303(d) and §305(b),Clean Water Act (P.L. 97-117). 127 pp.
- Standard Methods (SM). 1998. Standard Methods for the Examination of Water and Wastewater. 20th Edition. 1998. (Greenberg, Clesceri, and Eaton, eds.). APHA, AWWA, & WEF. 1220 pp.
- U.S. Environmental Protection Agency (USEPA). 1993a. Method 180.1: Determination of Turbidity by Nephelometry. Revisions 2. Environmental Monitoring Systems Laboratory, Office of Research and Development, Cincinnati, Ohio 45268. 16 pp. 11 pp.
- _____. 1993b. Method 351.2, Revision 2.0: Determination of Total Kjeldahl Nitrogen by Semi-Automated Colorimetry. Environmental Monitoring Systems Laboratory, Office of Research and Development, Cincinnati, Ohio 45268. 16 pp.
- _____. 1995. 40 CFR, Part 136, Revised as of July 1, 1995. Appendix A to Part 136 Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater. 333 pp.
- . 1999. Method 1664, Revision A: N-Hexane Extractable Material (HEM; Oil and Grease) and Silica Gel Treated N-Hexane Extractable Material

(SGT-HEM; Non-polar Material) by Extraction and Gravimetry. EPA-821-R-98-002. 23 pp. Appendix A

Report of Analytical Results

Calscience

WORK ORDER NUMBER: 18-11-2057

The difference is service

🔅 eurofins

AIR SOIL WATER MARINE CHEMISTRY

Analytical Report For Client: AECOS, Inc. Client Project Name: 36914 Attention: Ann Mello 45-939 Kamehameha Hwy #104 Kaneohe, HI 96744-3221

Julii Jam

Approved for release on 12/10/2018 by: Julie Lam Project Manager

ResultLink ▶

Email your PM >

Eurofins Calscience (Calscience) certifies that the test results provided in this report meet all NELAC Institute requirements for parameters for which accreditation is required or available. Any exceptions to NELAC Institute requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

7440 Lincoln Way, Garden Grove, CA 92841-1432 * TEL: (714) 895-5494 * FAX: (714) 894-7501 * www.calscience.com

🔅 eurofins

Calscience

Contents

Client Project Name:	36914
Work Order Number:	18-11-2057

1	Work Order Narrative	3
2	Sample Summary	4
3	Client Sample Data.3.1 EPA 610 Polynuclear Aromatic Hydrocarbons (Aqueous).3.2 EPA 608 Pesticides and PCBs (Aqueous).3.3 EPA 624 Volatile Organics (Aqueous).3.4 Combined Inorganic Tests.	5 5 7 9 13
4	Quality Control Sample Data. 4.1 MS/MSD. 4.2 LCS/LCSD.	14 14 19
5	Sample Analysis Summary	28
6	Glossary of Terms and Qualifiers.	29
7	Chain-of-Custody/Sample Receipt Form	30

Work Order: 18-11-2057

Page 1 of 1

Return to Contents

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 11/28/18. They were assigned to Work Order 18-11-2057.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

DoD Projects:

The test results contained in this report are accredited under the laboratory's ISO/IEC 17025:2005 and DoD-ELAP accreditation issued by the ANSI-ASQ National Accreditation Board. Refer to certificate and scope of accreditation ADE-1864.

Sample le	dentification Lab Number	Collection Date and Time	Number of Containers	Matrix
Attn:	Ann Mello			
		Number of Containers:		13
		Date/Time Received:		11/28/18 10:45
	Kaneohe, HI 96744-3221	PO Number:		
	45-939 Kamehameha Hwy #104	Project Name:		36914
Client:	AECOS, Inc.	Work Order:		18-11-2057

18-11-2057-1

11/26/18 10:47

Containers

Aqueous

Analytical Report

AECOS, Inc.			Date Recei	ved:			11/28/18
45-939 Kamehameha Hwy #104			Work Orde	r:			18-11-2057
Kaneohe, HI 96744-3221			Preparatior	n:		EPA 610	
			Method:				EPA 610
			Units:				ug/L
Project: 36914						Pa	age 1 of 2
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Bridge	18-11-2057-1-J	11/26/18 10:47	Aqueous	HPLC 5	12/01/18	12/03/18 19:30	181201L01
Comment(s): - Results were evaluated	I to the MDL (DL), con	centrations >=	to the MDL (D	L) but < RL (LC	Q), if found, are	qualified with a	a "J" flag.
Parameter	Resu	<u>ilt</u>	<u>RL</u>	MDL	<u>DF</u>	<u>(</u>	<u>Qualifiers</u>
Naphthalene	ND		0.96	0.074	0.999		
Acenaphthylene	ND		0.96	0.049	0.999		
Acenaphthene	ND		0.96	0.036	0.999		
Fluorene	ND		0.96	0.042	0.999		
Phenanthrene	ND		0.96	0.038	0.999		
Anthracene	ND		0.96	0.042	0.999		
Fluoranthene	ND		0.96	0.033	0.999		
Pyrene	ND		0.96	0.044	0.999		
Benzo (a) Anthracene	ND		0.96	0.034	0.999		
Chrysene	ND		0.96	0.031	0.999		
Benzo (b) Fluoranthene	ND		0.96	0.033	0.999		
Benzo (k) Fluoranthene	ND		0.96	0.034	0.999		
Benzo (a) Pyrene	ND		0.19	0.027	0.999		
Dibenz (a,h) Anthracene	ND		0.96	0.041	0.999		
Benzo (g,h,i) Perylene	ND		0.96	0.040	0.999		
Indeno (1,2,3-c,d) Pyrene	ND		0.96	0.051	0.999		
Surrogate	Rec.	<u>(%)</u>	Control Limits	Qualifiers	2		
Decafluorobiphenyl	72		40-160				

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Analytical Report

AECOS, Inc.			Date Recei	ved:			11/28/18
45-939 Kamehameha Hwy #104			Work Orde	r:			18-11-2057
Kaneohe, HI 96744-3221			Preparation	ו:			EPA 610
,			Method:				EPA 610
			Units:				ug/L
Project: 36914			ormor			Pa	ge 2 of 2
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-07-025-115	N/A	Aqueous	HPLC 5	12/01/18	12/03/18 17:52	181201L01
Comment(s): - Results were evaluated t	o the MDL (DL), con	centrations >=	= to the MDL (D	L) but < RL (LC	Q), if found, are	qualified with a	"J" flag.
Parameter	Resu	<u>ılt</u>	<u>RL</u>	MDL	DF	<u>C</u>	Qualifiers
Naphthalene	ND		1.0	0.077	1.00		
Acenaphthylene	ND		1.0	0.051	1.00		
Acenaphthene	ND		1.0	0.038	1.00		
Fluorene	ND		1.0	0.044	1.00		
Phenanthrene	ND		1.0	0.040	1.00		
Anthracene	ND		1.0	0.044	1.00		
Fluoranthene	ND		1.0	0.035	1.00		
Pyrene	ND		1.0	0.046	1.00		
Benzo (a) Anthracene	ND		1.0	0.036	1.00		
Chrysene	ND		1.0	0.033	1.00		
Benzo (b) Fluoranthene	ND		1.0	0.034	1.00		
Benzo (k) Fluoranthene	ND		1.0	0.036	1.00		
Benzo (a) Pyrene	ND		0.20	0.028	1.00		
Dibenz (a,h) Anthracene	ND		1.0	0.042	1.00		
Benzo (g,h,i) Perylene	ND		1.0	0.041	1.00		
Indeno (1,2,3-c,d) Pyrene	ND		1.0	0.053	1.00		
Surrogate	Rec.	<u>(%)</u>	Control Limits	Qualifiers	3		
Decafluorobiphenyl	78		40-160				

AECOS, Inc.			Date Recei	ved:			11/28/18
45-939 Kamehameha Hwy #104			Work Order	:			18-11-2057
Kaneohe, HI 96744-3221			Preparation	1:			EPA 608
			Method:				EPA 608
			Units:				ug/L
Project: 36914						Pa	ige 1 of 2
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Bridge	18-11-2057-1-K	11/26/18 10:47	Aqueous	GC 51	11/29/18	12/04/18 14:37	181129L16A
Comment(s): - Results were evaluated	to the MDL (DL), con		to the MDL (DI	_) but < RL (LC	Q), if found, are		"J" flag.
Parameter	Resu	<u>ult</u>	<u>RL</u>	MDL	DF	<u>(</u>	Qualifiers
Aldrin	ND		0.096	0.026	1.00		
Alpha Chlordane	ND		0.096	0.026	1.00		
Alpha-BHC	ND		0.096	0.027	1.00		
Aroclor-1016	ND		0.96	0.28	1.00		
Aroclor-1221	ND		0.96	0.27	1.00		
Aroclor-1232	ND		0.96	0.24	1.00		
Aroclor-1242	ND		0.96	0.17	1.00		
Aroclor-1248	ND		0.96	0.19	1.00		
Aroclor-1254	ND		0.96	0.22	1.00		
Aroclor-1260	ND		0.96	0.25	1.00		
Aroclor-1262	ND		0.96	0.25	1.00		
Beta-BHC	ND		0.096	0.029	1.00		
Chlordane	ND		0.96	0.32	1.00		
4,4'-DDD	ND		0.096	0.026	1.00		
4,4'-DDE	ND		0.096	0.026	1.00		
4,4'-DDT	ND		0.096	0.026	1.00		
Delta-BHC	ND		0.096	0.027	1.00		
Dieldrin	ND		0.096	0.027	1.00		
Endosulfan I	ND		0.096	0.027	1.00		
Endosulfan II	ND		0.096	0.026	1.00		
Endosulfan Sulfate	ND		0.096	0.028	1.00		
Endrin	ND		0.096	0.029	1.00		
Endrin Aldehyde	ND		0.096	0.025	1.00		
Endrin Ketone	ND		0.096	0.023	1.00		
Gamma Chlordane	ND		0.096	0.026	1.00		
Gamma-BHC	ND		0.096	0.029	1.00		
Heptachlor	ND		0.096	0.025	1.00		
Heptachlor Epoxide	ND		0.096	0.024	1.00		
Methoxychlor	ND		0.096	0.024	1.00		
Toxaphene	ND		1.9	0.57	1.00		
Surrogate	Rec.	(%)	Control Limits	Qualifiers	5		
Decachlorobiphenyl	83		50-135				
2,4,5,6-Tetrachloro-m-Xylene	65		50-135				

AECOS, Inc.			Date Recei	ved:			11/28/18
45-939 Kamehameha Hwy #104			Work Order				18-11-2057
Kaneohe, HI 96744-3221	Preparation:						EPA 608
			Method:				EPA 608
			Units:				ug/L
Project: 36914						Pa	ige 2 of 2
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-12-731-611	N/A	Aqueous	GC 51	11/29/18	12/04/18 13:12	181129L16A
Comment(s): - Results were evaluated	to the MDL (DL), cond	centrations >=	to the MDL (DI	_) but < RL (LO	Q), if found, are		ı "J" flag.
Parameter	Resu	lt	<u>RL</u>	MDL	DF	<u>(</u>	Qualifiers
Aldrin	ND		0.10	0.027	1.00		
Alpha Chlordane	ND		0.10	0.027	1.00		
Alpha-BHC	ND		0.10	0.028	1.00		
Aroclor-1016	ND		1.0	0.29	1.00		
Aroclor-1221	ND		1.0	0.28	1.00		
Aroclor-1232	ND		1.0	0.25	1.00		
Aroclor-1242	ND		1.0	0.18	1.00		
Aroclor-1248	ND		1.0	0.20	1.00		
Aroclor-1254	ND		1.0	0.23	1.00		
Aroclor-1260	ND		1.0	0.26	1.00		
Aroclor-1262	ND		1.0	0.26	1.00		
Beta-BHC	ND		0.10	0.030	1.00		
Chlordane	ND		1.0	0.33	1.00		
4,4'-DDD	ND		0.10	0.027	1.00		
4,4'-DDE	ND		0.10	0.027	1.00		
4,4'-DDT	ND		0.10	0.027	1.00		
Delta-BHC	ND		0.10	0.029	1.00		
Dieldrin	ND		0.10	0.029	1.00		
Endosulfan I	ND		0.10	0.028	1.00		
Endosulfan II	ND		0.10	0.027	1.00		
Endosulfan Sulfate	ND		0.10	0.029	1.00		
Endrin	ND		0.10	0.031	1.00		
Endrin Aldehyde	ND		0.10	0.026	1.00		
Endrin Ketone	ND		0.10	0.024	1.00		
Gamma Chlordane	ND		0.10	0.027	1.00		
Gamma-BHC	ND		0.10	0.030	1.00		
Heptachlor	ND		0.10	0.026	1.00		
Heptachlor Epoxide	ND		0.10	0.025	1.00		
Methoxychlor	ND		0.10	0.025	1.00		
Toxaphene	ND		2.0	0.59	1.00		
Surrogate	Rec.	<u>(%)</u>	Control Limits	<u>Qualifiers</u>			
Decachlorobiphenyl	79		50-135				
2,4,5,6-Tetrachloro-m-Xylene	62		50-135				

AECOS, Inc.

11/28/18

/ LOOO, 110.							
45-939 Kamehameha Hwy #104			Work Orde	r:			18-11-2057
Kaneohe, HI 96744-3221			Preparatior	ו:			N/A
			Method:				EPA 624
			Units:				ug/L
Drainati 26014			Onits.			De	-
Project: 36914						Pa	age 1 of 4
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Bridge	18-11-2057-1-A	11/26/18 10:47	Aqueous	GC/MS WW	11/29/18	11/29/18 19:18	181129L015
Comment(s): - The compound 2-chlor sensitive. The sample h	oethylvinyl ether hydro as been acid preserve	lyzes under a d and therefor	cidic conditions re, these compo	. Acrolein and a bunds may be bi	crylonitrile have ased low.	been docume	nted to be acid
- Results were evaluated	d to the MDL (DL), con	centrations >=	to the MDL (D	L) but < RL (LO	Q), if found, are	qualified with a	ı "J" flag.
Parameter	Resu	<u>ılt</u>	RL	MDL	DF	<u>(</u>	Qualifiers
1,1,1,2-Tetrachloroethane	ND		1.0	0.40	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		10	4.0	1.00		
Naphthalene	ND		10	2.5	1.00		
Tert-Butyl Alcohol (TBA)	ND		10	4.0	1.00		
Isopropanol	ND		50	20	1.00		
Acetone	ND		50	20	1.00		
Benzene	ND		0.50	0.20	1.00		
Bromodichloromethane	ND		1.0	0.40	1.00		
Bromoform	ND		1.0	0.40	1.00		
Bromomethane	ND		1.0	0.81	1.00		
2-Butanone	ND		5.0	3.3	1.00		
Carbon Disulfide	ND		20	8.0	1.00		
Carbon Tetrachloride	ND		0.50	0.20	1.00		
Chlorobenzene	ND		1.0	0.40	1.00		
Chloroethane	ND		1.0	0.40	1.00		
Chloromethane	ND		1.0	0.40	1.00		
2-Chloroethyl Vinyl Ether	ND		2.0	0.80	1.00		
Chloroform	ND		1.0	0.40	1.00		
1,3-Dichlorobenzene	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		1.0	0.40	1.00		
1,2-Dichlorobenzene	ND		1.0	0.40	1.00		
Dibromochloromethane	ND		1.0	0.40	1.00		
Dichlorodifluoromethane	ND		1.0	0.40	1.00		
1,1-Dichloroethane	ND		1.0	0.40	1.00		
1,2-Dichloroethane	ND		0.50	0.40	1.00		
1,1-Dichloroethene	ND		1.0	0.40	1.00		
c-1,2-Dichloroethene	ND		1.0	0.40	1.00		
t-1,2-Dichloroethene	ND		1.0	0.40	1.00		
1,2-Dichloropropane	ND		1.0	0.40	1.00		
c-1,3-Dichloropropene	ND		0.50	0.20	1.00		
t-1,3-Dichloropropene	ND		0.50	0.20	1.00		
Ethylbenzene	ND		1.0	0.40	1.00		
2-Hexanone	ND		20	8.0	1.00		

Analytical Report

Date Received:

RL: Reporting Limit. DF: Dilution Factor.

MDL: Method Detection Limit.

Return to Contents

AECOS, Inc.		Date Receive	Date Received:				
45-939 Kamehameha Hwy #104		Work Order:	18-11-2057				
Kaneohe, HI 96744-3221		Preparation:	N/A				
		Method:			EPA 624		
		Units:					
Drain at 00014		Units.	ug/L				
Project: 36914					Page 2 of 4		
Parameter	Result	<u>RL</u>	MDL	DF	<u>Qualifiers</u>		
Methylene Chloride	ND	2.0	0.86	1.00			
4-Methyl-2-Pentanone	ND	10	4.0	1.00			
Styrene	ND	1.0	0.40	1.00			
1,1,2,2-Tetrachloroethane	ND	1.0	0.40	1.00			
Tetrachloroethene	ND	1.0	0.40	1.00			
Toluene	ND	1.0	0.40	1.00			
1,1,1-Trichloroethane	ND	1.0	0.40	1.00			
1,1,2-Trichloroethane	ND	1.0	0.40	1.00			
Trichloroethene	ND	1.0	0.40	1.00			
Trichlorofluoromethane	ND	5.0	2.0	1.00			
Vinyl Acetate	ND	5.0	2.5	1.00			
Vinyl Chloride	ND	0.50	0.20	1.00			
o-Xylene	ND	1.0	0.40	1.00			
p/m-Xylene	ND	1.0	0.40	1.00			
1,2-Dibromoethane	ND	1.0	0.40	1.00			
Acrylonitrile	ND	2.0	1.7	1.00			
Methyl-t-Butyl Ether (MTBE)	ND	1.0	0.40	1.00			
Acrolein	ND	5.0	3.8	1.00			
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>				
1,2-Dichloroethane-d4	114	80-134					
Toluene-d8	102	80-120					
1,4-Bromofluorobenzene	115	80-120					
Dibromofluoromethane	97	80-126					

AECOS, Inc.			Date Recei	ved:			11/28/18
45-939 Kamehameha Hwy #104			Work Order	r:			18-11-2057
Kaneohe, HI 96744-3221			N/A				
			Method:				EPA 624
			Units:				ug/L
Project: 36914						Pa	ige 3 of 4
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-15-681-1055	N/A	Aqueous	GC/MS WW	11/29/18	11/29/18 17:35	181129L015
Comment(s): - Results were evaluated	to the MDL (DL), cond	centrations >=	to the MDL (DI	L) but < RL (LO	Q), if found, are		"J" flag.
Parameter	Resu	<u>ilt</u>	<u>RL</u>	MDL	DF	<u>(</u>	Qualifiers
1,1,1,2-Tetrachloroethane	ND		1.0	0.40	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		10	4.0	1.00		
Naphthalene	ND		10	2.5	1.00		
Tert-Butyl Alcohol (TBA)	ND		10	4.0	1.00		
Isopropanol	ND		50	20	1.00		
Acetone	ND		50	20	1.00		
Benzene	ND		0.50	0.20	1.00		
Bromodichloromethane	ND		1.0	0.40	1.00		
Bromoform	ND		1.0	0.40	1.00		
Bromomethane	ND		1.0	0.81	1.00		
2-Butanone	ND		5.0	3.3	1.00		
Carbon Disulfide	ND		20	8.0	1.00		
Carbon Tetrachloride	ND		0.50	0.20	1.00		
Chlorobenzene	ND		1.0	0.40	1.00		
Chloroethane	ND		1.0	0.40	1.00		
Chloromethane	ND		1.0	0.40	1.00		
2-Chloroethyl Vinyl Ether	ND		2.0	0.80	1.00		
Chloroform	ND		1.0	0.40	1.00		
1,3-Dichlorobenzene	ND		1.0	0.40	1.00		
1,4-Dichlorobenzene	ND		1.0	0.40	1.00		
1,2-Dichlorobenzene	ND		1.0	0.40	1.00		
Dibromochloromethane	ND		1.0	0.40	1.00		
Dichlorodifluoromethane	ND		1.0	0.40	1.00		
1,1-Dichloroethane	ND		1.0	0.40	1.00		
1,2-Dichloroethane	ND		0.50	0.40	1.00		
1,1-Dichloroethene	ND		1.0	0.40	1.00		
c-1,2-Dichloroethene	ND		1.0	0.40	1.00		
t-1,2-Dichloroethene	ND		1.0	0.40	1.00		
1,2-Dichloropropane	ND		1.0	0.40	1.00		
c-1,3-Dichloropropene	ND		0.50	0.40	1.00		
t-1,3-Dichloropropene	ND		0.50	0.20	1.00		
Ethylbenzene	ND		1.0 20	0.40	1.00		
2-Hexanone	ND		20	8.0	1.00		
Methylene Chloride	ND		2.0	0.86	1.00		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit. **Return to Contents**

AECOS, Inc.		Date Receive	Date Received: Work Order:				
45-939 Kamehameha Hwy #104		Work Order:					
Kaneohe, HI 96744-3221		Preparation:		N/A			
		Method:			EPA 624		
		Units:			ug/L		
Project: 36914	Offits.	Page 4 of 4					
Parameter	<u>Result</u>	<u>RL</u>	MDL	DF	Qualifiers		
4-Methyl-2-Pentanone	ND	10	4.0	1.00			
Styrene	ND	1.0	0.40	1.00			
1,1,2,2-Tetrachloroethane	ND	1.0	0.40	1.00			
Tetrachloroethene	ND	1.0	0.40	1.00			
Toluene	ND	1.0	0.40	1.00			
1,1,1-Trichloroethane	ND	1.0	0.40	1.00			
1,1,2-Trichloroethane	ND	1.0	0.40	1.00			
Trichloroethene	ND	1.0	0.40	1.00			
Trichlorofluoromethane	ND	5.0	2.0	1.00			
Vinyl Acetate	ND	5.0	2.5	1.00			
Vinyl Chloride	ND	0.50	0.20	1.00			
o-Xylene	ND	1.0	0.40	1.00			
p/m-Xylene	ND	1.0	0.40	1.00			
1,2-Dibromoethane	ND	1.0	0.40	1.00			
Acrylonitrile	ND	2.0	1.7	1.00			
Methyl-t-Butyl Ether (MTBE)	ND	1.0	0.40	1.00			
Acrolein	ND	5.0	3.8	1.00			
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>				
1,2-Dichloroethane-d4	114	80-134					
Toluene-d8	101	80-120					
1,4-Bromofluorobenzene	116	80-120					
Dibromofluoromethane	97	80-126					

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Return to Contents

Return to Contents

🔅 eurofins	
	>

Calscience

AECOS, Inc.					Date Rece	eived:			11/28/18
45-939 Kamehameha Hv	vy #104		Work Order:					18-11-2057	
Kaneohe, HI 96744-3221									
Project: 36914									Page 1 of 1
Client Sample Number			L	ab Sampl	e Number		Date/Time (Collected	Matrix
Bridge			1	8-11-2057	7-1		11/26/18 10	:47	Aqueous
Comment(s): (24) - Resul	ts were evalua	ated to the N	MDL (DL), c	oncentrat	ions >= to the N	/IDL (DL) b	out < RL (LOQ)	, if found, are	e qualified with a "J" flag.
Parameter	<u>Results</u>	<u>RL</u>	MDL	<u>DF</u>	<u>Qualifiers</u>	<u>Units</u>	<u>Date</u> Prepared	<u>Date</u> Analyzed	Method
HEM: Oil and Grease (24)	ND	1.0	0.80	1.00		mg/L	11/29/18	11/29/18	EPA 1664A
Ammonia (as N) (24)	ND	0.050	0.0086	1.00		mg/L	N/A	12/06/18	EPA 350.1
Total Kjeldahl Nitrogen (24)	0.17	0.20	0.047	1.00	J	mg/L	N/A	12/05/18	EPA 351.2
Phosphorus, Total (24)	0.028	0.050	0.020	1.00	J	mg/L	N/A	12/01/18	EPA 365.1
Nitrate-Nitrite (as N) (24)	0.54	0.10	0.029	1.00		mg/L	12/03/18	12/03/18	SM 4500-NO3 E
Total Nitrogen (24)	0.71	0.10	0.10	1.00		mg/L	N/A	12/06/18	Total Nitrogen by Calc
Method Blank							N/A		Aqueous
Comment(s): (24) - Resul	ts were evalua	ated to the N	MDL (DL), c	oncentrat	ions >= to the N	/IDL (DL) b	out < RL (LOQ)	, if found, are	e qualified with a "J" flag.
Parameter	<u>Results</u>	<u>RL</u>	MDL	DF	<u>Qualifiers</u>	<u>Units</u>	<u>Date</u> Prepared	<u>Date</u> Analyzed	Method
HEM: Oil and Grease (24)	ND	1.0	0.80	1.00		mg/L	11/29/18	11/29/18	EPA 1664A
Ammonia (as N) (24)	ND	0.050	0.0086	1.00		mg/L	N/A	12/06/18	EPA 350.1
Total Kjeldahl Nitrogen (24)	ND	0.20	0.047	1.00		mg/L	N/A	12/05/18	EPA 351.2
Phosphorus, Total (24)	ND	0.050	0.020	1.00		mg/L	N/A	12/01/18	EPA 365.1
Nitrate-Nitrite (as N) (24)	ND	0.10	0.029	1.00		mg/L	12/03/18	12/03/18	SM 4500-NO3 E

AECOS, Inc.					Date Recei	ved:					11/28/18
45-939 Kamehameha Hwy #104				Work Order	r:		18-11-2057				
Kaneohe, HI 96744-3221				Preparation	N/A						
					Method:			EPA 1664A			
Project: 36914										Page 1	of 5
Quality Control Sample ID	Туре			Matrix	Instrumen	t Da	te Prepared	Date Analyze	ed M	IS/MSD Bate	h Number
18-11-2130-1	Sample			Aqueous	N/A	11/	29/18	11/29/18 19:	30 I1	129HEMS2	
18-11-2130-1	Matrix Sp	ike		Aqueous	N/A	11/	29/18	11/29/18 19:	30 I1	129HEMS2	
18-11-2130-1	Matrix Sp	ike Duplic	cate	Aqueous	N/A	11/	29/18	11/29/18 19:	30 I1	129HEMS2	
Parameter	<u>Sample</u> <u>Conc.</u>	<u>MS</u> Spike	<u>MS</u> Conc	<u>MS</u> <u>%Rec.</u>	<u>MSD</u> Spike	MSD Conc.	<u>MSD</u> <u>%Rec.</u>	<u>%Rec. CL</u>	<u>RPD</u>	RPD CL	Qualifiers
HEM: Oil and Grease	ND	38.46	35.19	9 91	38.46	35.87	93	78-114	2	0-18	

AECOS, Inc.				Dat	e Received:		11/28/18					
45-939 Kamehameha Hwy #104				Work Order:				18-11-2057				
Kaneohe, HI 96744-3221				Preparation:					N/A			
			Method:				EPA 350.1					
Project: 36914									Page 2	2 of 5		
Quality Control Sample ID	Туре		Matrix	I	nstrument	Date Prepared	Date Ana	lyzed	MS/MSD Ba	tch Number		
18-11-2368-1	Sample		Aqueou	s i	ACA 1	N/A	12/06/18	14:16	181206S01			
18-11-2368-1	Matrix Spike		Aqueou	s /	ACA 1	N/A	12/06/18	14:16	181206S01			
18-11-2368-1	Matrix Spike	Duplicate	Aqueou	s /	ACA 1	N/A	12/06/18	14:16	181206S01			
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> %Rec	<u>MSD</u> <u>Conc.</u>	<u>MSD</u> <u>%Rec.</u>	%Rec. CL	<u>RPD</u>	<u>RPD CL</u>	Qualifiers		
Ammonia (as N)	ND	0.5000	0.3851	77	0.4063	81	90-110	5	0-25	3		

Return to Contents

AECOS, Inc.				Dat	te Received:		11/28/18					
45-939 Kamehameha Hwy #104				Work Order:				18-11-2057				
Kaneohe, HI 96744-3221				Preparation:					N/A			
			Method:				EPA 351.2					
Project: 36914									Page 3	of 5		
Quality Control Sample ID	Туре		Matrix		Instrument	Date Prepared	Date Ana	lyzed	MS/MSD Ba	tch Number		
18-11-2254-3	Sample		Aqueou	s	ACA 1	N/A	12/05/18	11:58	181205S01			
18-11-2254-3	Matrix Spike		Aqueou	s	ACA 1	N/A	12/05/18	11:58	181205S01			
18-11-2254-3	Matrix Spike	Duplicate	Aqueou	s	ACA 1	N/A	12/05/18	11:58	181205S01			
Parameter	<u>Sample</u> Conc.	<u>Spike</u> Added	<u>MS</u> Conc.	<u>MS</u> %Re	<u>MSD</u> c. <u>Conc.</u>	<u>MSD</u> %Rec.	<u>%Rec. CL</u>	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>		
Total Kjeldahl Nitrogen	2.705	1.000	3.560	85	3.575	87	90-110	0	0-20	3		

Return to Contents

AECOS, Inc.				Date Received:					11/28/18				
45-939 Kamehameha Hwy #104				Work Order:				18-11-2057					
Kaneohe, HI 96744-3221				Preparation:				N/A					
			Method:				EPA 365.1						
Project: 36914									Page 4	of 5			
Quality Control Sample ID	Туре		Matrix		Instrument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	tch Number			
Bridge	Sample		Aqueous	;	ACA 1	N/A	12/01/18	12:47	181201S02				
Bridge	Matrix Spike		Aqueous	;	ACA 1	N/A	12/01/18	12:47	181201S02				
Bridge	Matrix Spike	Duplicate	Aqueous	;	ACA 1	N/A	12/01/18	12:47	181201S02				
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	MS Conc.	<u>MS</u> %Rec	c. <u>MSD</u> Conc.	<u>MSD</u> <u>%Rec.</u>	%Rec. CL	<u>RPD</u>	RPD CL	Qualifiers			
Phosphorus, Total	ND	0.2000	0.2282	114	0.2227	111	90-110	2	0-25	3			

AECOS, Inc. 45-939 Kamehameha Hwy #104					e Received:		11/28/18						
					k Order:			8-11-2057					
Kaneohe, HI 96744-3221				Preparation:					N				
				Method:				SM 4500-NO3 E					
Project: 36914									Page 5	of 5			
Quality Control Sample ID	Туре		Matrix	lı	nstrument	Date Prepared	Date Ana	lyzed	MS/MSD Bat	ch Number			
18-11-2368-2	Sample		Aqueous	ι ι	JV 7	12/03/18	12/03/18	20:37	I1203NO3S2				
18-11-2368-2	Matrix Spike		Aqueous	ι	JV 7	12/03/18	12/03/18	20:37	I1203NO3S2				
18-11-2368-2	Matrix Spike	Duplicate	Aqueous	ι	JV 7	12/03/18	12/03/18	20:37	I1203NO3S2				
Parameter	<u>Sample</u> <u>Conc.</u>	<u>Spike</u> Added	MS Conc.	<u>MS</u> %Rec.	<u>MSD</u> <u>Conc.</u>	<u>MSD</u> %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>			
Nitrate-Nitrite (as N)	ND	0.5000	0.5266	105	0.5238	105	70-130	1	0-25				

AECOS, Inc.

45-939 Kamehameha Hwy #104 Kaneohe, HI 96744-3221

Project: 36914

Date Received:	11/28/18
Work Order:	18-11-2057
Preparation:	EPA 610
Method:	EPA 610
	Page 1 of 9

Quality Control Sample ID	Туре	Matrix		Instrument	Date Pre	pared Da	te Analyzed	LCS/LCSD Batch Number	
099-07-025-115	LCS	Aqı	Aqueous		12/01/18	12/	03/18 18:25	181201L01	
099-07-025-115	LCSD	Aqı	leous	HPLC 5	12/01/18	12/	03/18 18:57	181201L01	
Parameter	Spike Added	LCS Conc.	<u>LCS</u> <u>%Rec.</u>	LCSD Conc.	LCSD %Rec.	<u>%Rec. Cl</u>	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Benzo (b) Fluoranthene	2.000	1.803	90	1.778	89	40-160	1	0-20	
Benzo (k) Fluoranthene	2.000	1.846	92	1.839	92	40-160	0	0-20	
Benzo (a) Pyrene	2.000	1.644	82	1.627	81	40-160	1	0-20	
Dibenz (a,h) Anthracene	2.000	1.818	91	1.718	86	40-160	6	0-20	
Benzo (g,h,i) Perylene	2.000	1.887	94	1.820	91	40-160	4	0-20	
Indeno (1,2,3-c,d) Pyrene	2.000	1.856	93	1.880	94	40-160	1	0-20	

AECOS, Inc.	ECOS, Inc.						Date Received:						
45-939 Kamehameha Hw	y #104			Work Order	:		18-11-2057						
Kaneohe, HI 96744-3221	Kaneohe, HI 96744-3221					Preparation:							
		Method:		EPA 1664A									
Project: 36914								Page	2 of 9				
Quality Control Sample ID	Туре	Ma	atrix	Instrument Date Prepar		epared [Date Analyzed	LCS/LCSD Ba	atch Number				
099-16-923-517	LCS	Ac	lueous	N/A	N/A 11/29/18		11/29/18 19:30	I1129HEML2					
099-16-923-517	LCSD	Ac	lueous	N/A	11/29/18		11/29/18 19:30	I1129HEML2					
Parameter	Spike Adde	d LCS Conc	. <u>LCS</u> <u>%Rec.</u>	LCSD Conc.	LCSD %Rec.	%Rec.	<u>CL</u> <u>RPD</u>	RPD CL	<u>Qualifiers</u>				

AECOS, Inc.							Date Received:						
45-939 Kamehameha Hw	y #104			Work Order	:		18-11-2057						
Kaneohe, HI 96744-3221				Preparation	:		N/A						
		Method:			EPA 350								
Project: 36914							Page	e 3 of 9					
Quality Control Sample ID	Туре	Ma	trix	Instrument Date Prepared		repared	Date	Analyzed	LCS/LCSD E	Batch Number			
099-12-735-419	LCS	Aq	ueous	ACA 1 N/A			12/06	6/18 14:16	181206L01				
099-12-735-419	LCSD	Aq	Aqueous		N/A		12/06	6/18 14:16	181206L01				
Parameter	Spike Added	LCS Conc. LCS %Rec.		LCSD Conc.	LCSD %Rec %Rec.		<u>c. CL</u> <u>RPD</u>		RPD CL	Qualifiers			
			<u>%Rec.</u>		<u>%Rec.</u>								

AECOS, Inc.					Date Receiv	ved:	11/28/18				
45-939 Kamehameha Hw	y #104				Work Order	:		18-11-2057			
Kaneohe, HI 96744-3221	Kaneohe, HI 96744-3221					:	N/A				
					Method:			EPA 351.2			
Project: 36914										Page	e 4 of 9
Quality Control Sample ID	Туре		Matri	x	Instrument Date Prepared		Date	Analyzed	LCS/LCSD E	Batch Number	
099-12-741-335	LCS		Aque	eous	ACA 1	ACA 1 N/A		12/05	5/18 11:58	181205L01	
099-12-741-335	LCSD		Aqueous		ACA 1	N/A		12/05	5/18 11:58	181205L01	
Parameter	Spike Added	LCS Conc. LCS <u>%Rec.</u>		LCSD Conc.	LCSD <u>%Rec</u> %Rec.		<u>c. CL</u> <u>RPD</u>		RPD CL	Qualifiers	
	<u></u>			%Rec.		%Rec.					

AECOS, Inc.				Date Receiv	ved:		11/28/18				
45-939 Kamehameha Hw	y #104			Work Order	:		18-11-2057				
Kaneohe, HI 96744-3221	Kaneohe, HI 96744-3221					Preparation:					
		Method:		EPA 36							
Project: 36914						Page	e 5 of 9				
Quality Control Sample ID	Туре	Ma	trix	Instrument Date Prepared		repared	Date Analyz	ed LCS/LCSD	Batch Number		
099-12-739-261	LCS	Aq	ueous	ACA 1 N/A			12/01/18 12	:47 181201L02			
099-12-739-261	LCSD	Aq	Aqueous		N/A		12/01/18 12	:47 181201L02			
Parameter	Spike Added	LCS Conc.	LCS Conc. LCS %Rec.		<u>LCSD</u> %Rec %Rec.		CL RPD	RPD CL	Qualifiers		
Phosphorus, Total	0.2000	0.2059 103			65 103 90-110		0 0	0-20			

AECOS, Inc.	AECOS, Inc.					Date Received:						
45-939 Kamehameha Hw	y #104			Work Order	:				18-11-2057			
Kaneohe, HI 96744-3221	Kaneohe, HI 96744-3221					Preparation:						
		Method:			SM 4500-NO3 E							
Project: 36914								Pa	age 6 of 9			
Quality Control Sample ID	Туре	Ма	trix	Instrument Date Prepared		epared	Date Analy	zed LCS/LCS	SD Batch Number			
099-14-282-702	LCS	Aq	ueous	UV 7	UV 7 12/03/18		12/03/18 2	0:37 I1203NC)3L2			
099-14-282-702	LCSD	Aq	ueous	UV 7	12/03/18	8	12/03/18 2	0:37 I1203NC	03L2			
Parameter	Spike Added	LCS Conc.	LCS Conc. LCS %Rec.		LCSD %Rec.	<u>%Rec.</u>	CL RPI	<u> </u>	<u>CL</u> Qualifiers			
Nitrate-Nitrite (as N)	0.5000	0.5040 101		0.5038	101 80-120) 0	0-20				

11/28/18

EPA 608

EPA 608

Page 7 of 9

18-11-2057

Date Received:

Work Order:

Preparation: Method:

AECOS, Inc. 45-939 Kamehameha Hwy #104

Kaneohe, HI 96744-3221

Project: 36914

Quality Control Sample ID	Туре		Matrix	Instru	iment	Date Prepare	ed Date Ar	nalyzed	LCS/LCSD Ba	tch Number
099-12-731-611	LCS		Aqueous	GC 5	1	11/29/18	12/04/1	8 17:19	181129L16A	
099-12-731-611	LCSD		Aqueous	GC 5	1	11/29/18	12/04/1	8 17:34	181129L16A	
Parameter	<u>Spike</u> <u>Added</u>	LCS Conc.	<u>LCS</u> <u>%Rec.</u>	<u>CS LCSD I</u> <u>%Rec. Conc.</u>		<u>%Rec. CL</u>	ME CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Aldrin	0.5000	0.2924	58	0.2250	45	50-135	36-149	26	0-25	X,ME
Alpha Chlordane	0.5000	0.3254	65	0.2534	51	50-135	36-149	25	0-25	
Alpha-BHC	0.5000	0.3651	73	0.2761	55	50-135	36-149	28	0-25	Х
Aroclor-1016	2.000	2.210	110	2.260	113	50-135	36-149	2	0-25	
Aroclor-1260	2.000	1.820	91	1.950	98	50-135	36-149	7	0-25	
Beta-BHC	0.5000	0.3945	79	0.2665	53	50-135	36-149	39	0-25	Х
4,4'-DDD	0.5000	0.3518	70	0.2762	55	50-135	36-149	24	0-25	
4,4'-DDE	0.5000	0.3321	66	0.2650	53	50-135	36-149	22	0-25	
4,4'-DDT	0.5000	0.3098	62	0.2511	50	50-135	36-149	21	0-25	
Delta-BHC	0.5000	0.3715	74	0.2759	55	50-135	36-149	30	0-25	Х
Dieldrin	0.5000	0.3462	69	0.2685	54	50-135	36-149	25	0-25	
Endosulfan I	0.5000	0.3595	72	0.2780	56	50-135	36-149	26	0-25	Х
Endosulfan II	0.5000	0.4183	84	0.3272	65	50-135	36-149	24	0-25	
Endosulfan Sulfate	0.5000	0.3375	68	0.2534	51	50-135	36-149	28	0-25	Х
Endrin	0.5000	0.3475	70	0.2707	54	50-135	36-149	25	0-25	
Endrin Aldehyde	0.5000	0.3651	73	0.2871	57	50-135	36-149	24	0-25	
Gamma Chlordane	0.5000	0.3122	62	0.2453	49	50-135	36-149	24	0-25	ME
Gamma-BHC	0.5000	0.3604	72	0.2784	56	50-135	36-149	26	0-25	Х
Heptachlor	0.5000	0.3488	70	0.2655	53	50-135	36-149	27	0-25	Х
Heptachlor Epoxide	0.5000	0.3400	68	0.2646	53	50-135	36-149	25	0-25	
Methoxychlor	0.5000	0.3610	72	0.2814	56	50-135	36-149	25	0-25	

Total number of LCS compounds: 21

Total number of ME compounds: 2

Total number of ME compounds allowed: 1

LCS ME CL validation result: 'Not Pass (See Narrative)

11/28/18

EPA 624

Page 8 of 9

N/A

18-11-2057

Quality Control - LCS/LCSD

Date Received:

Work Order:

Preparation:

Method:

Calscience

AECOS, Inc.	
45-939 Kamehameha Hwy	#104

Kaneohe, HI 96744-3221

Project: 36914

Quality Control Sample ID	Туре		Matrix Instrument			Date Prepare	ed Date An	alyzed	LCS/LCSD Batch Number		
099-15-681-1055	LCS		Aqueous	GC/I	MS WW	11/29/18	11/29/18 11/29/18 13:32				
099-15-681-1055	LCSD		Aqueous	GC/I	MS WW	11/29/18	11/29/18	B 14:04	181129L015		
Parameter	<u>Spike</u> Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	<u>%Rec. CL</u>	ME CL	<u>RPD</u>	RPD CL	Qualifiers	
Benzene	50.00	54.93	110	55.69	111	37-151	18-170	1	0-30		
Bromodichloromethane	50.00	61.42	123	60.92	122	35-155	15-175	1	0-30		
Bromoform	50.00	53.39	107	55.20	110	45-169	24-190	3	0-30		
Bromomethane	50.00	73.64	147	67.41	135	1-243	0-283	9	0-30		
Carbon Tetrachloride	50.00	58.81	118	55.66	111	60-140	47-153	6	0-30		
Chlorobenzene	50.00	57.50	115	56.03	112	37-160	16-180	3	0-30		
Chloroethane	50.00	33.43	67	31.57	63	14-230	0-266	6	0-30		
Chloromethane	50.00	54.29	109	47.01	94	1-273	0-318	14	0-30		
2-Chloroethyl Vinyl Ether	50.00	15.66	31	17.51	35	1-305	0-356	11	0-30		
Chloroform	50.00	64.81	130	63.07	126	51-138	36-152	3	0-30		
1,3-Dichlorobenzene	50.00	55.08	110	53.71	107	59-156	43-172	3	0-30		
1,4-Dichlorobenzene	50.00	54.47	109	51.83	104	18-190	0-219	5	0-30		
1,2-Dichlorobenzene	50.00	54.23	108	52.88	106	18-190	0-219	3	0-30		
Dibromochloromethane	50.00	58.50	117	59.08	118	53-149	37-165	1	0-30		
1,1-Dichloroethane	50.00	48.35	97	45.99	92	1-234	0-273	5	0-30		
1,2-Dichloroethane	50.00	57.02	114	58.20	116	49-155	31-173	2	0-30		
1,1-Dichloroethene	50.00	60.23	120	55.52	111	59-155	43-171	8	0-30		
t-1,2-Dichloroethene	50.00	57.11	114	55.88	112	54-156	37-173	2	0-30		
1,2-Dichloropropane	50.00	45.17	90	45.82	92	1-210	0-245	1	0-30		
c-1,3-Dichloropropene	50.00	60.21	120	58.83	118	1-227	0-265	2	0-30		
t-1,3-Dichloropropene	50.00	68.58	137	68.76	138	17-183	0-211	0	0-30		
Ethylbenzene	50.00	61.19	122	58.03	116	37-162	16-183	5	0-30		
Methylene Chloride	50.00	48.40	97	48.17	96	1-221	0-258	0	0-30		
1,1,2,2-Tetrachloroethane	50.00	52.02	104	54.75	110	46-157	28-176	5	0-30		
Tetrachloroethene	50.00	62.29	125	58.88	118	64-148	50-162	6	0-30		
Toluene	50.00	52.95	106	51.14	102	47-150	30-167	3	0-30		
1,1,1-Trichloroethane	50.00	65.24	130	62.95	126	52-162	34-180	4	0-30		
1,1,2-Trichloroethane	50.00	60.39	121	62.10	124	52-150	36-166	3	0-30		
Trichloroethene	50.00	57.11	114	54.75	109	71-157	57-171	4	0-30		
Trichlorofluoromethane	50.00	65.47	131	58.65	117	17-181	0-208	11	0-30		
Vinyl Chloride	50.00	48.67	97	42.07	84	1-251	0-293	15	0-30		
o-Xylene	50.00	60.42	121	57.60	115	60-140	47-153	5	0-30		
p/m-Xylene	100.0	124.3	124	119.4	119	60-140	47-153	4	0-30		
Acrylonitrile	50.00	39.98	80	44.90	90	40-160	20-180	12	0-30		
Methyl-t-Butyl Ether (MTBE)	50.00	54.65	109	54.68	109	60-130	48-142	0	0-30		
Acrolein	100.0	94.47	94	98.72	99	40-160	20-180	4	0-30		

AECOS, Inc.	Date Received:	11/28/18
45-939 Kamehameha Hwy #104	Work Order:	18-11-2057
Kaneohe, HI 96744-3221	Preparation:	N/A
	Method:	EPA 624
Project: 36914		Page 9 of 9

Total number of LCS compounds: 36 Total number of ME compounds: 0 Total number of ME compounds allowed: 2 LCS ME CL validation result: Pass

Calscience

Work Order: 18-11-2057			Page 1 of 1	
Method	Extraction	Chemist ID	Instrument	Analytical Location
EPA 1664A	N/A	784	N/A	1
EPA 350.1	N/A	1086	ACA 1	1
EPA 351.2	N/A	1086	ACA 1	1
EPA 365.1	N/A	1086	ACA 1	1
EPA 608	EPA 608	669	GC 51	1
EPA 610	EPA 610	1037	HPLC 5	1
EPA 624	N/A	1179	GC/MS WW	2
SM 4500-NO3 E	N/A	1139	UV 7	1
Total Nitrogen by Calc	N/A	92	N/A	1

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841 Location 2: 7445 Lampson Avenue, Garden Grove, CA 92841

Page 1 of 1

Calscience

Work Order: 18-11-2057

Glossary of Terms and Qualifiers

<u>Qualifiers</u>	Definition
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
Е	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
SG	The sample extract was subjected to Silica Gel treatment prior to analysis.
Х	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.
	Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

CHAIN OF CUSTODY FORM PROJECT Image: Constraint of the con	RUSH SEE REVERSE special instructions		PRESERVATION	TKN by SEA) H by SEA) H9504)(DL 41mg/L) Hasog	HĊI	Ø	\$	¢	\$				E OF PERSON COLLECTING THE	RATORY: DATE	A I NUL	DATE 20			
SUB CHAIN OI PROJECT FILE No. LOG NUMBER	fello <u>amello@aecos.com</u>		REQUESTED ANALYSES	NO3N03 (504 400 NO3E1, 1N (EFA 351-2 TWN 04 5 NH3 (EPA 350-1 10, 5FA)TP (EPA 360-1 10, 5FA)TP (Oil and Grease (EPA leaga) (DL	EPA Gay	EPACOBH	EPA GO (PAH)	EPA (608 (Pesticides)	Soore				SSIBLE, NOTE: NAME AND DATED SIGNATURI BY THE LABORATORY.	DATE 11-26 RECEIVED FOR LABORATORY	TIME 19 15 SIGNATURE	11-37 RELINQUISHED: 2018 (2018 (2018)			
Inc. ighway Suite 104 6744 234-7775	CONTACT: Ann Mello PHONE No.: 🕿 Purchase Order No.:		SAMPLE TYPE CONTAINER(S)			3 40ml	3 40ml	1 11 amber	1 1 1 amber	L l l'amber)			CLIENTS PROVIDING SAMPLES TO THE LABORATORY SHOULD COMPLETE AS MUCH OF THE ABOVE FORM AS POSSIBLE, NOTE: NAME AND DATED SIGNATURE OF PERSON COLLECTING THE SAMPLE BELOW ♦. INFORMATION REQUESTED IN SHADED BOXES ABOVE TO BE FILLED IN BY THE LABORATORY.	RECEIVED BY: DATI	SIGNATURE C	in Surly	PRECAUTIONS:		uested for TN
AECOS, Inc. 45-939 Kamehameha Highway S Kaneohe, Oahu, HI 96744 Tel: (808) 234-7770 Fax: 234-7775	AECOS, Inc. (see above)	SAMPLED	TIME	11-36-18 1047										3 TO THE LABORATORY SHOULD COMI ELOW ♦. INFORMATION REQUESTED	DATE II-36	20 ¹ X	DATE - る。 2018 TIME 1つ) く		* Please Report dawn to mol!	soovell RL /47 we/L mot requested
	CLIENT: A ADDRESS: (s		SAMPLE ID	1 D Bridge	2	3	4	5	9	7 6 1	8	6	10	CLIENTS PROVIDING SAMPLES SAMPLE MIIST BE ENTERED BI	SAMPLED BY:	C. Line bough, N. Shrader	RELINQUISHED: SIGNATURE CL (Accos)	· 8	* Please R	200 rugh

Page 30 of 34

Return to Contents

AECOS, Inc. 45-939 Kamehameha Highway Suite 104 Kaneohe, Oahu, HI 96744 Tel: (808) 234-7770 Fax: 234-7775

Subcontractor:	
τc	

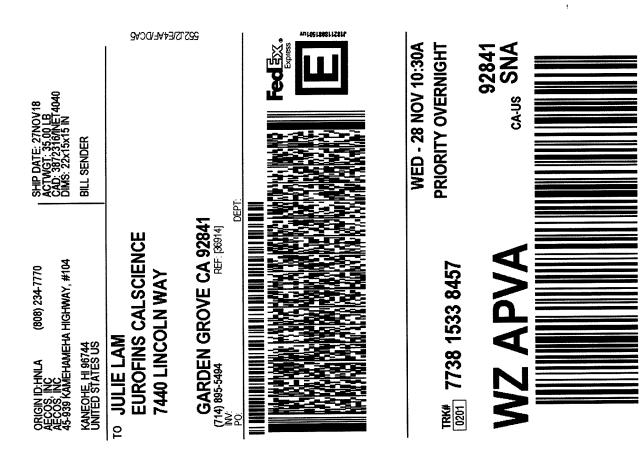
Requested By:				
Date Requested:				
Send results to:				

Jessica Withrow

11-27-18 amello@aecos.com

Turnaround Time Requested : Normal TA+

Log No.	# of samples	# of bottles	Sample Type	Analysis requested	Date collected	Sample Prep / preservation
[36914]	١	a	stream	$NH3$, NO_3NO_3 , TN, TP	126-18	Hasoy
	١	1	stream	Oil and Grease	11-36-18	Hasson
	١	3	stream	EPA 624	11-26-18	HCL
	١	3	stream	EPAGOY	11-26-18	-0-
	1	١	stream	EPA GIO (PAH)	11-26-18	\Diamond
	١	\	stream	EPA 608 (Pesticides)	11-20-18	-0-
	\	١	Steeam	Sport	11-26-18	-0-
				·		


PLEASE RETURN AECOS COOLERS with replacement bottles:

YES)

NO

OTHER SPECIAL NOTES/INSTRUCTIONS:

Return to Contents

After printing this label: 1. Use the 'Print' button on th

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.

2. Fold the printed page along the horizontal line. 3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

During or larges, and other tieres your agreement to the service conditions in Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery,misdelivery,or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other tiems listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

Page 32 of 34

💸 eurofins			WORK ORDE	R NUMBE	R: 1800	3 8 of 3	8057
C	alscience	SAMPLE RECEIPT	CHECKLIST		COOLER	1	OF /
CLIENT: AECO	os, In				ГЕ: <u>11</u>		
TEMPERATURE: (Criter Thermometer ID: SC6 (C Sample(s) outside	; ia: 0.0°C – 6.0 ;F: 0.0°C); Ter temperature c	D°C, not frozen except sedir mperature (w/o CF): riteria (PM/APM contacted)	9°C (w/ CF): by:)	°C;	Blank		
	ambient temp	riteria but received on ice/cl perature; placed on ice for tr		ar sampling	Checke	ed by: _	UF50
	and Intact and Intact	□ Present but Not Intact □ Present but Not Intact	Not Present	□ N/A □ N/A	Checko Checko		UTSO WSO
SAMPLE CONDITION:					Yes	No	N/A
Chain-of-Custody (COC)	document(s)	received with samples					
		e D Matrix D Number of e		••••••••••••••••••••••••••••••••••••••	🖌		
No analysis reques	ted 🛛 Not re	linquished 🛛 No relinquisl	hed date D No relir	nquished tim	e		
Sampler's name indicate	d on COC						
Sample container label(s) consistent w	ith COC			🗖		
Sample container(s) inta	ct and in good	condition			🔎		
Proper containers for ana	alyses request	ted			<u>e</u>		
Sufficient volume/mass f	or analyses re	quested	;		🛛		
Samples received within	holding time						
Aqueous samples for	certain analys	ses received within 15-minu	te holding time				
□ pH □ Residual Cl	nlorine 🛛 Dis	solved Sulfide 🛛 Dissolve	d Oxygen		🛛		Þ
Proper preservation cher	nical(s) noted	on COC and/or sample cor	ntainer		🗹		
Unpreserved aqueous	s sample(s) re	ceived for certain analyses			,		
D Volatile Organics	Total Metal	s Dissolved Metals			1		
Acid/base preserved san	nples - pH with	nin acceptable range			🖌		
Container(s) for certain a	inalysis free o	f headspace			🔽 👘		
Ø Volatile Organics	Dissolved (Gases (RSK-175) 🛛 Disso	lved Oxygen (SM 45	500)			
Carbon Dioxide (SI	M 4500) 🛛 F	errous Iron (SM 3500)	Hydrogen Sulfide (Ha	ach)			/
Tedlar™ bag(s) free of c	ondensation				🗖		A
CONTAINER TYPE: 3				nk Lot Numl		•)
		100PJ 🗆 100PJna2 🗖 125AG	B □ 125AGBh □ 125	AGBp 🗆 125	5PB 🗆 125	PBznna	ı (ṗH9)
□ 250AGB □ 250CGB □ □ 1AGB □ 1AGBna2 □ 1/ Solid: □ 4ozCGJ □ 8ozCG	250CGBs (pH AGBs (pH2) J GJ □ 16ozCGJ	_2) □ 250PB □ 250PB (pH_ □ AGBs (O&G) □ 1PB □ 1PB □ Sleeve () □ EnCores® be □ PUF □ Othe	_2) □ 500AGB □ 500 Bna (pH12) ☑ 250 () □ TerraCores [®] (DAGJ □ 500/ PT □	AGJs (pH	_2)	500PB
Container: A = Amber, B =	Bottle, C = Cle	ar, E = Envelope, G = Glass, J	= Jar, P = Plastic, and	I Z = Ziploc/R	esealable E	Bag	
		HCI, n = HNO ₃ , na = NaOH, n		O₄, Label	ed/Check	ed by:	moo
		= Na ₂ SO ₃ +NaHSO ₄ .H ₂ O, znn a		ОН	Review	ed by:	1725

WORK ORDER NUMBER: 18-11-2357

Calscience

🔅 eurofins

DATE: 11 / 28/ 2018

CAMPLES CONTAINEDS AND			Commen			and a star of a second condition of the second s
SAMPLES, CONTAINERS, AND			Commen	115		
Sample(s) NOT RECEIVED but lis		•				
□ Sample(s) received but NOT LIST						
□ Holding time expired (list client or						
□ Insufficient sample amount for rec		iiysis)				· · · · · · · · · · · · · · · · · · ·
□ Improper container(s) used (list ar						
□ Improper preservative used (list a						
□ pH outside acceptable range (list						
□ No preservative noted on COC or	label (list analysis and r	otify lab)				
□ Sample container(s) not labeled						
Client sample label(s) illegible (list			Racei	10 d 12	conto	and charten
Client sample label(s) do not mate	ch COC (comment)	l	Kecen	,		iners instead
Project information			-4	p; see	confa	ing type
Client sample ID						L.
Sampling date and/or time						
Number of container(s)		:	D .	in al a	200	
Requested analysis			Recei	. /	250 ml	plastic
Sample container(s) compromised	d (comment)		Con	taineri	invese	rved analyses
Broken			no	t reque	ested a	on coc./
Water present in sample contain	liner		-,			
□ Air sample container(s) comprom	sed (comment)					
□ Flat						······
Very low in volume						
Leaking (not transferred; dupli	cate bag submitted)					
Leaking (transferred into ECI 1	Γedlar™ bags*)		<u></u>			
Leaking (transferred into client	's Tedlar™ bags*)					
* Transferred at client's request.						
MISCELLANEOUS: (Describe)			Commer	nts		
HEADSPACE:						
(Containers with bubble > 6 mm or ¼ inch for v	volatile organic or dissolved gas	analysis) (Containers wi	th bubble for othe	r analysis)	
ECI ECI Total Sample ID Container ID Number**	ECI ECI Sample ID Container ID	Total Number**	ECI Sample ID	ECI Container ID	Total Number**	Requested Analysis
				•		
		<u> </u>				
					 	

.

SAMPLE ANOMALY REPORT

Comments:

** Record the total number of containers (i.e., vials or bottles) for the affected sample.

Reported by: _______

2017-08-29 Revision

Attachment D – Glossary of Chemicals (Section G.9)

This glossary is for general use and is not intended to be a complete or definitive reference. The parameters are categorized into Metals, Organonitrogen Compounds, Pesticides, Phenols, Phthalates, Polynuclear Aromatic Hydrocarbons, Volatile Organics, and Others and are listed alphabetically.

The information was obtained primarily from Environmental Protection Agency (EPA) <u>Ambient</u> <u>Water Quality Criteria</u> documents which are referenced in EPA's <u>Quality Criteria for Water</u> (EPA 440/5-86-001), updated May 1, 1987. Additional information was obtained from the EPA pamphlet "Suspended, Cancelled and Restricted Pesticides," January 1985; <u>The Condensed</u> <u>Chemical Dictionary</u>, 10th Ed. (Van Nostrand Reinhold Co., Inc., New York, 1981); and <u>The</u> <u>Farm Chemicals Handbook</u> (Meister Publishing Company, Willoughby, OH, 1988).

Information on organotins was obtained from the International Organotin Symposium held at Halifax, Nova Scotia in September 1987 and published in Volume 4 of the <u>Oceans '87</u> <u>Proceedings</u>, by the Marine Technology Society, Washington D.C., and IEEE Ocean Engineering Society, Piscataway, NJ.

- a. Metals
 - Antimony A metal used as a hardening alloy for lead, particularly in lead-acid batteries. Also used as a semiconductor and in pyrotechnics.
 - Arsenic A metal used as an alloy with lead and copper in shot, batteries, and cables. Arsenic trioxide is used as a pigment and as an insecticide, rodenticide, herbicide, sheep and cattle dip, hide preservative, and wood preservative. It was used as a pesticide in the production of canec panels in Hilo. Use in houses is restricted to concentrations below 1.5 percent. Carcinogen.
 - Beryllium A metal for various high-technology uses including nuclear reactor moderator and structural material. Carcinogen.
 - Cadmium A metal used in electroplating and coating, alloys, nickel-cadmium batteries, pigments, and in a variety of other industrial areas.
 - Chromium A metal used in plating, alloys and in pigments. Hexavalent forms are most toxic and are used in cooling tower additives.
 - *Copper A metal used in wiring, plumbing, electroplating, alloys, insecticides, and in anti- fouling paints.*
 - Lead A metal used in batteries, gasoline additives, solder, and ammunition.
 - Mercury A metal used in dentistry, electronics, instruments, lamps, metallurgy and formerly in anti-fouling paints.
 - Nickel A metal used in alloys, electroplating, and batteries.
 - Selenium A metalloid element used in electronics, rubber production, dandruff shampoo, and a trace element in animal feed.

Silver - A metal with various electronic, chemical, plating, photographic, and dental uses.

Thallium - A metal. Pesticide registration of thallium sulfate cancelled.

- Tributyltin Tributyltin is of environmental concern primarily because of its use in marine anti- fouling paints. This use has recently been restricted by Congress. Organotins have also been used in agriculture and residential areas to control fungi and insects including moths, houseflies, cockroaches, and mosquito larvae. The largest use is in stabilizing polyvinyl chloride polymers used in construction materials and food packaging.
- *Zinc A metal used in alloys, electroplating, galvanizing, batteries, and cathodic protection.*
- b. Organonitrogen Compounds

Benzidine - Aromatic amine used in dye production. Carcinogen.

Dinitro-o-cresol - Pesticide, fungicide, insecticide and miticide. Also used as a blossom- thinning agent on fruit trees.

Dinitrotoluene - Commercial and military explosive.

- Diphenylhydrazine Used as a reagent for the sugars arabinose and lactose and for the production of phenylbutanone and benzidine.
- Nitrobenzene Used in the production of aniline dyes, rubber, medicinals, metal polish, shoe black, perfume, and as a combustion propellant and chemical reaction, and crystallizing solvent.
- Nitrosamines Only small quantities are synthesized for research and rubber and pesticide production. Primary environmental exposure is probably due to the nitrosation of amine
- and amide precursors in reactions in air, soil, water, food, and animal systems. Carcinogen.
- c. Pesticides
 - Aldrin Insecticide used in ground injection for termite control and non-food plant dip. Registration for other uses cancelled. Metabolizes to dieldrin. Carcinogen.
 - Chlordane Insecticide used for termite control and non-food plant dip. Registration for other uses cancelled. Carcinogen.
 - Chlorpyrifos Organophosphorus insecticide (a.k.a. Dursban, Lorsban). Used locally for termite control.
 - DDT Persistent lipid-soluble chlorinated pesticide. Formerly most widely used. All pesticide uses cancelled except by government agencies and physicians. Metabolizes to DDE and TDE. Carcinogen.

Demeton - Systemic insecticide and acaricide applied as a foliage spray and soil drench.

- Dieldrin Persistent insecticide used in ground injection for termite control and as nonfood plant dip. Registration for other uses cancelled. Carcinogen.
- Endosulfan -Insecticide and acaricide (a.k.a. Thiodan). Used on pineapples in Hawaii.
- Endrin Pesticide, rodenticide, and avicide. Used on sugarcane to control the sugarcane beetle. Registration cancelled for control of the sugarcane borer. Teratogen.
- Guthion Organophosphorus pesticide used for many pests on various fruits, melons, nuts, vegetables, field crops, ornamental, and shade trees.
- Heptachlor Insecticide registered for termite control and non-food plant dip. Registration for other uses cancelled. Carcinogen.
- Lindane Broad spectrum insecticide used in livestock sprays, forestry, christmas trees, structural treatments, hardwood logs and lumber, dog sprays, dusts and dips, flea collars, moth sprays, seed treatments, shelf paper, and household sprays. Carcinogen.
- Malathion Organophosphorus insecticide used for many insects including: aphids, spider mites, scale insects, house flies, mosquitos, and for insects attacking fruits, vegetables, ornamental and stored products. Used in public health programs to control mosquitos.
- Methoxychlor Organochlorine pesticide.
- Mirex Organophosphorus insecticide. Registration cancelled 12/01/77. Mirex was used to control fire ants on pineapples in Hawaii.
- Parathion Organophosphorus pesticide used on fruit, nut, vegetable, and field crops. TDE - Metabolite of DDT. Carcinogen.
- Toxaphene 175 compounds of chlorinated camphene. Formerly the most heavily used pesticide. Registration cancelled in 1982 with exceptions for cattle, pineapples, and bananas. No U.S. production. Persistent in the environment. Carcinogen.

d. Phenols

- Chlorinated Phenols (Includes cholorinated cresols). Synthesis of dyes, pigments, resins, pesticides, herbicides and used directly as flea repellents, fungicides, wood preservatives, mold inhibitors, antiseptics, disinfectants, and anti-gumming agents in gasoline. Chlorinated phenol pesticide products include 2,4-D, 2,4-DCP, 2,4,5-T, 2,3,4,6-TCP, and PCP. Some forms carcinogenic.
- 2-Chlorophenol Intermediate in chemical production of fungicides, slimicides, bactericides, antiseptics, disinfectants, and wood and glue preservatives. Can be produced in the chlorination of drinking water and sewage. May be biodegraded.
- 2,4-Dichlorophenol Used in the production of herbicides (2,4-D) and in mothproofing, antiseptics, and seed disinfectants. Metabolic and photodegradation product of the above.
- Nitrophenols 2,4,6 trinitrophenol (picric acid) has been used as an explosive, dye intermediate, reagent, germicide, fungicide, staining agent and tissue fixative, and in photochemicals, pharmaceuticals, and metal etching. Mono and dinitrophenols would occur in the environment primarily from discharges from manufacturing plants or possibly from the degradation of pesticides. They are used in the

production of dyes, photochemicals, pesticides, wood preservatives, explosives, and leather treatments. See also 2,4 dinitro-o-cresol.

Pentachlorophenol - Very common pesticide, fungicide, and bactericide (a.k.a. PCP).

Phenol - Used in production of epoxy and phenolic resins, pharmaceuticals, germicides, fungicides, slimicides, herbicides, dyes and acids, and as a disinfectant and antiseptic.

e. Phthalates

Phthalate Esters - Plasticizers used especially in Polyvinyl chloride (PVC) production. Easily extractable and up to 60 percent of the total weight of plastic. Also used in the production of pesticide carriers, cosmetics, fragrances, munitions, industrial oils, and insect repellents.

- f. Polynuclear Aromatic Hydrocarbons
 - Acenaphthene Coal tar product used in the manufacturing of dyes and plastics and as an insecticide and fungicide. Also detected in cigarette smoke and gasoline exhaust.
 - Fluoranthene A polynuclear aromatic hydrocarbon. Primarily a pyrolysis product formed in frying, smoking, incineration, etc. Natural as well as man-made sources. Carcinogen.
 - Naphthalene Primary parameter of coal tar. Used in dye production, formulation of solvents, and chemical synthesis. Also used in lubricants and motor fuels, and as a moth repellant, insecticide, anthelminthic, vermicide, and intestinal antiseptic.
 - Polynuclear Aromatic Hydrocarbons Diverse class of compounds formed by incomplete combustion of organics with insufficient oxygen. Examples include benzo[a]pyrene and benz[a]anthracene. Carcinogen.
- g. Volatile Organics
 - Acrolein Biocide for weed, algae, mollusk and slime control, and to protect liquid fuels from microorganisms. Also used in leather tanning, tissue fixation, paper, textiles, crease- proofing cotton, and as a chemical intermediate, plasticizer, copolymer in photography, builder in laundry and dishwashing detergents, and coating for aluminum and steel.
 - Acrylonitrile Copolymer used in the production of fibers and plastics (e.g., ABS Acrylonitrile- Butadiene-Styrene plastic), and latexes and chemicals. Banned as a resin for soft drink containers and as a fumigant. Similar toxic effects as cyanide. Carcinogen.
 - Benzene Coal tar and petroleum product used in pharmaceutical and chemical synthesis, including the production of styrene, detergents, pesticides, thinners, and inks. Also used as a cleaner and degreaser, solvent, and gasoline antiknock additive. Carcinogen.
 - BHC Benzene hexachloride. See hexachlorocyclohexane and lindane. C arcinogen.

Carbon Tetrachloride - Solvent and grain fumigant also used in fire extinguishers. Carcinogen.

- Chlorinated Benzenes Solvents for fats, oils and greases, also used as fumigants, degreasers, lubricants, dielectrics, dye carriers, wood preservatives; in chemical, pesticide, and herbicide production; heat transfer; military pyrotechnics; and termite control. Carcinogen.
- Chlorinated Ethanes Used in the production of tetraethyl lead and vinyl chloride and as solvents and chemical intermediates. Some forms carcinogenic.
- Chloroalkyl ethers Used in organic synthesis, textiles, ion exchange resins, pesticides, and reaction solvents.
- Chloroform Chemical solvent. Formed in the chlorination of sewage and water supplies. Carcinogen.
- Dichlorobenzenes Used in air deodorants, insecticides, chemical production, dyes, herbicides, and degreasers.
- Dichlorobenzidine Used in the production of dyes and pigments and a curing agent for polyurethanes. Carcinogen.
- Dichloroethylenes Intermediate in chemical production, and polyvinylidene chloride copolymers in food packaging materials (e.g., plastic wrap) and tank coatings. Degradation products of larger chlorinated hydrocarbons. Carcinogen.
- Dichloropropane Soil fumigant for nematodes, oil and fat solvent, and degreaser. Dichloropropene - Soil fumigant for nematodes, used in Hawaii on pineapples. Also oil and fat solvent and degreaser.
- *Ethylbenzene Up to 20 percent of gasoline. Widespread commercial use including production of styrene, diluents in paints, and used as insecticides.*
- Hexachlorobutadiene Organic solvent used in chlorine production recovery, in rubber and lubricant production, and as a gyroscope fluid. Carcinogen.
- Hexachlorocyclohexane Broad spectrum insecticide (a.k.a. BHC). Only the gamma isomer, lindane, is currently registered and produced. Carcinogen.
- Hexachlorocyclopentadiene Base of several chlorinated pesticides including: aldrin, dieldrin, chlordane, heptachlor, endrin, isodrin, kepone, mirex, endosulfan, and pentac. Also used in the production of flame retardants.
- Isophorone Solvent for fats, oils, gums, natural and synthetic resins, cellulose derivatives, lacquers, pesticides and herbicides. Used in chemical and plant growth retardant production.
- *Tetrachloroethylene Solvent in textile and dry cleaning, metal cleaning, and chemical production (a.k.a. perchloroethylene or PCE). Carcinogen.*
- Toluene Aviation fuel and high-octane blending stock, chemical intermediate, thinner, solvent for paints, gums, resins, oils, rubber, and vinyl, and used in plastic cement, chemicals, explosives, and detergents.
- Trichlorinated ethanes Metal degreaser, chemical intermediate, adhesive and resin solvent, pesticide, dry cleaning solvent, formerly used as a fumigant 1,1,2 isomer carcinogenic.

- Trichloroethylene Degreasing solvent in metal industries. Formerly dry cleaning solvent and extractive solvent in foods (a.k.a. TCE). Carcinogen.
- Vinyl chloride Polymerized in the production of PVC, the most widely used material in the manufacture of plastics. All pesticide uses cancelled (whether an active or inert ingredient) for uses in the home, food handling establishments, hospitals, and enclosed areas. Degradation product of larger chlorinated hydrocarbons. Carcinogen.
- h. Others
 - Chlorine Chlorine is commonly used to disinfect wastewater and water supplies and to control fouling organisms in cooling water systems.
 - Cyanide Used and formed in many industrial processes including steel, petroleum, plastics, synthetic fibers, metal plating, mining, and chemical industries.
 - Dioxin Trace contaminant of chlorinated phenols, chlorinated phenoxy acids (especially the herbicide 2,4,5-T and Silvex), and hexachlorophene. Carcinogen.
 - Polychlorinated biphenyls (PCBs) Used as a transformer and capacitor fluid. Also used as a heat transfer, hydraulic, compressor, and vacuum pump fluid, plasticizer, and in lubricants and wax extenders. No longer manufactured in the United States. All pesticide uses eliminated. Carcinogen.

At	ttachment E – Site-Specific Dewatering Plan (Section G.10)	
а.	Provide the dewatering facility designer information.	
	Legal Name:	
	Mailing Address:	
	City, State and Zip Code +4:	
	Street Address:	
	City, State and Zip Code +4:	
	Contact Person & Title:	
	Phone No.:	
	Fax No.:	
	Email:	
b.	Provide the treatment facility designer information.	
	Legal Name: Legal Name:	
	Mailing Address:	
	City, State and Zip Code +4:	
	Street Address:	
	City, State and Zip Code +4:	
	Contact Person & Title:	
	Phone No.:	
	Fax No.:	
	Email:	

- *c.* Describe the pumping devices to be used, their pumping capacity, and the number of devices to be used. _____
- *d.* Describe the dewatering treatment from intake to discharge (i.e., sheet piled excavation, slotted intake pipe, gravel filter, filter fabric around intake, sedimentation basin, filter tank, etc.), including how the discharge will reach State water(s). ______
- e. Describe the design concerns, including, but not limited to, estimated flow amount, construction location, and amount of space available, and the pollutants that may be present in the source water and those associated with the construction activity.
- *f. Provide all calculations used in designing the treatment system, including estimating the flow rate.*
- g. Describe the mitigative measures, including the corrective action to be taken (i.e, add filter tank, increase sediment basin or tank volume, reduce flow quantity, etc.) when and if the construction dewatering effluent does not meet the conditions of the NPDES Permit and basic and specific water quality criteria.
- *h. Provide the name and title of the field person responsible for the operation and maintenance of the dewatering system.*

i. Provide the Operations Plan. The Operations Plan shall include a description of operations from startup to termination of the discharge (i.e., install dewatering well, excavate top "x" feet of ground, discharge initial effluent to excavation until clear, route NPDES Form G Page 25 of 27 Rev. 1/31/2013

discharge to treatment system when effluent is clear, route discharge back to excavation if effluent becomes turbid, visual inspections, sample collections, etc.).

- *j.* Provide the maintenance scheduling or action criteria.
- k. Provide the maintenance program.
- *m.* Provide the monitoring and visual inspection program.
- n. Provide the Cessation of Discharge Plan. The Cessation of Discharge Plan shall indicate under what conditions the discharge will be stopped (i.e., storm event, discharge noncompliance, maintenance, etc.).
- o. Provide the Effluent Control Plan. The Effluent Control Plan shall indicate the normal dewatering operations (pump, treatment, discharge). _____
- *p. Provide the treatment requirements. Treatment requirements shall include a statement of what is expected from the treatment system.*
- *q. Construction Pollution Prevention Plan*
 - *i.* Describe the prohibited practices. Examples of prohibited practices are: discharging the dewatering effluent without the appropriate permits, treatment, or when physical changes are discovered; continuing the dewatering operation when contamination is encountered; storing construction materials near the dewatering site(s); and falsifying the dewatering effluent water quality test report to conform to the basic water quality criteria.
 - *ii.* Describe other management practices that will be utilized to prevent pollution of State waters.
 - *iii.* Describe your practices to control project site runoff, spillage or leaks, sludge or waste disposal, or drainage from raw material storage or stockpiling area(s)

Attachment F Dewatering Discharge Calculations (Item G.2.)

Project: Kaipapau Stream Bridge Replacement

Prepared for: State Department of Transportation, Highways Division

Consultant:	R. M. Towill Corporation	Prepared by:	RSY
Date:	9/19/19	Checked by:	WC

1.0 PURPOSE

Determine the estimated dewatering discharge flow rate that will occur during construction of the new bridge and relocation of a 12-inch waterline.

Note: these calculations are intended for NPDES-NOI permit purposes only.

2.0 DESCRIPTION OF CONDITIONS

The dewatering discharge requirement is the amount of water entering the excavation through the portion of the earthen walls below the groundwater elevation. The amount of water flowing through the earthen walls is assumed to be equal to the rate of water moving through the groundwater aquifer, which can be estimated using Darcy's Law.

3.0 <u>REFERENCES</u>

- 3.1 *Pre-Conceptual Design Report, Kamehameha Highway, Kaipapau Stream Bridge Replacement,* R. M. Towill Corporation, January 2006
- 3.2 *Principles of Engineering Geology and Geotechnics*, Krynine and Judd, McGraw-Hill Book Company Inc., New York, 1957.
- 3.3 Civil Engineering Handbook, Fourth Edition, Urquhart, McGraw-Hill, 1959
- 3.4 *Civil Engineering Reference Manual*, Lindeburg, Professional Publications, California, 1992.
- 3.5 Geotechnical Engineering Exploration, Geolabs, August 6, 2014.

4.0 CRITERIA & ASSUMPTIONS

- 4.1 Assume groundwater elevation will vary with tidal fluctuations. The worst-case (maximum) groundwater elevation is assumed to be 2 feet.
- 4.2 The top excavation elevation is assumed to range from +0 feet (stream bed) to +10 feet (north abutment) mean sea level (msl).
- 4.3 Per the structural plan S8.1, shaft excavation will be a drilled shaft with diameter of 4 feet to a depth of:

Abutment 1	(-)79.6	ft msl
Abutment 2	(-)64.5	ft msl
Test Shaft	(-)92.0	ft msl

4.4 Per the civil plan sheet C-21, the 12-inch waterline excavation below the water table is about 80 LF, with assumed bottom trench elevation of (-)5 ft msl (1 foot below bottom of concrete jacket).

Project:Kaipapau Stream Bridge ReplacementPrepared for:State Department of Transportation, Highways DivisionConsultant:R. M. Towill CorporationPrepared by:RSYDate:9/19/19Checked by:WC

5.0 CALCULATIONS

- 5.1 Shaft Excavation
 - 5.1.1 Sketch of shaft excavation (not to scale)

Top Shaft varies Groundwater El. +2.0 H = varies Bottom Shaft

5.1.2 Darcy's Law can be expressed as Q = AKJ (adapted from Ref. 3.4, pg. 6-6), where:

- $Q = Discharge flow rate, ft^3/day$
- A = Seepage flow area, ft^2
- K = Hydraulic conductivity, ft/day
- J = Hydraulic gradient, ft/ft
- 5.1.3 Determine A

A is the area of the earthen walls below the groundwater elevation, where:

Abutment 1	D = H = A = A = A =	4 ft (shaft diameter) 81.6 ft (height of groundwater above shaft bottom) Area of the shaft bottom + Area of the shaft sides $(\pi * D^2 / 4) + (\pi * D * H)$ 1038 ft ²
Abutment 2	D = H = A = A = A =	4 ft (shaft diameter) 66.5 ft (height of groundwater above shaft bottom) Area of the shaft bottom + Area of the shaft sides $(\pi * D^2 / 4) + (\pi * D * H)$ 848 ft ²
Test Shaft	D = H = A = A = A =	4 ft (shaft diameter) 94 ft (height of groundwater above shaft bottom) Area of the shaft bottom + Area of the shaft sides $(\pi * D^2 / 4) + (\pi * D * H)$ 1194 ft ²

Project:	Kaipapau Stream Bridge Replace	ment	
Prepared for:	State Department of Transportation	on, Highways Divis	ion
Consultant: Date:	R. M. Towill Corporation 9/19/19	Prepared by: Checked by:	RSY WC

5.1.4 Determine K

From the geotechnical report (Ref. 3.5), pg. 8:

Abutment 1 (Boring No. 1)	0.038 ft/min	54.7 ft/day
Abutment 2 (Boring No. 3)	0.042 ft/min	60.5 ft/day
Test Shaft (Boring No. 3)	0.042 ft/min	60.5 ft/day

K was measured at two different depths and using the constant head and falling head methods. The hydraulic conductivity at the lower depth and the constant head method was used.

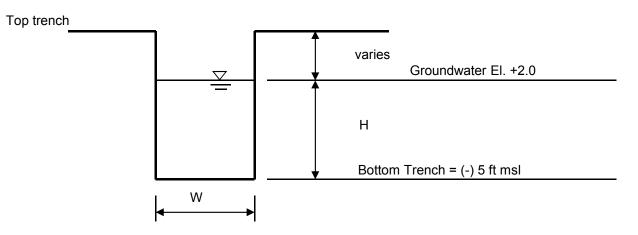
5.1.5 Determine J

The hydraulic gradient in flat areas is typically 1%+ (Ref. 3.2, pg. 181).

J = 0.01 ft/ft (assumed)

5.1.6 Calculate Q for each shaft

5 gpm
3 gpm
5 gpm


Project:Kaipapau Stream Bridge ReplacementPrepared for:State Department of Transportation, Highways DivisionConsultant:R. M. Towill CorporationPrepared by:RSYDate:9/19/19Checked by:WC

5.1.7 Calculate Shaft Volume

<u>Abutmer</u> 81	<u>nt 1</u> 4 ft diameter .6 ft depth			
V =	1,025 ft ³	=	7,671 gal	
<u>Abutmer</u> 66	<u>nt 2</u> 4 ft diameter 5.5 ft depth			
V =	836 ft ³	=	6,251 gal	
<u>Test Shaft</u> 4 ft diameter 94 ft depth				
V =	1,181 ft ³	=	8,836 gal	

5.2 Waterline Trench Excavation

5.2.1 Sketch of waterline trench excavation (not to scale)

- 5.2.2 Similar to the calcs for the shaft excvation, use Darcy's Law, Q = AKJ, where:
 - Q = Discharge flow rate, ft^3/day
 - A = Seepage flow area, ft^2
 - K = Hydraulic conductivity, ft/day
 - J = Hydraulic gradient, ft/ft

Project:	Kaipapau Stream Bridge Replacement		
Prepared for:	State Department of Transportati	on, Highways Divis	sion
Consultant: Date:	R. M. Towill Corporation 9/19/19	Prepared by: Checked by:	RSY WC

5.2.3 Determine A

A is the area of the earthen walls below the groundwater elevation, where:

W =	3 ft (trench width)
H =	7 ft (height of groundwater above trench bottom)
L =	80 ft (length of trench under groundwater)
A =	Area of the trench bottom + Area of the ternch sides
A =	L * W + 2 * (W * H) + 2 * L * H)
A =	1,402 ft ²

5.2.4 Determine K

Similar to the calcs for the shaft excvation, K is obtained from the geotechnical report (Ref. 3.5), pg. 8: Boring No. 3 is the closest to the waterline trench location.

Boring No. 3 0.078 ft/min 112.3 ft/day

K was measured at two different depths and using the constant head and falling head methods. The hydraulic conductivity at the higher depth and the constant head method was used.

K =0.001 cm/secRanges from 10-3 to 10-7, assume high end of range as2.83 ft/dayworst case

5.2.5 Determine J

The hydraulic gradient in flat areas is typically 1%+ (Ref. 3.2, pg. 181).

J = 0.01 ft/ft (assumed)

5.2.6 Calculate Q for the waterline trench

Q =	A * K * J	
Q =	1,574.7 ft ³ /day	
Q =	11,779 gal/day	8.18 gpm

5.3 Calculate Total Dewatering Volume

Shaft Assumptions:

- 1. Construction Period = 5 days per shaft
- 2. Dewatering during construction & once during concrete pouring into steel casing
- 3. 4 shafts per abutment

Trench Assumptions:

1. Construction Period = 5 days

Project: Kaipapau Stream Bridge Replacement

Prepared for: State Department of Transportation, Highways Division

Consultant:	R. M. Towill Corporation	Prepared by:	RSY
Date:	9/19/19	Checked by:	WC

DEWATERING VOLUME

	Abutment 1					
	Volume during shaft drilling	=	4 shafts x	5 days x 21,243 gpd =	84,970	gallons
	Volume during concrete pour	=		7671 gallons =	30,683	gallons
	TOTAL VOLUME, ABUTMENT 1	=		<u> </u>	115,653	gallons
						0
	Abutment 2					
	Volume during shaft drilling	=	4 shafts x	5 days x 19,187 gpd =	76,746	gallons
	Volume during concrete pour	=	4 shafts x	: 6251 gallons =	25,005	gallons
	TOTAL VOLUME, ABUTMENT 2	=			101,751	gallons
	Test Shaft					
	Volume during shaft drilling	=		5 days x 27,003 gpd =	27,003	gallons
	Volume during concrete pour	=	1 shaft x	8836 gallons =	8,836	gallons
	TOTAL VOLUME, TEST SHAFT	=			35,840	gallons
	Materia Treask					
	Waterline Trench Volume during waterline constru	uction -	- Edava	v 59 505 and -	E0 00E	gallons
	volume during waterime consti		= 5 uays	x 56,595 gpu –	58,895	galions
	GRAND TOTAL VOLUME	=			312,138	gallons
5.9 Calc	GRAND TOTAL VOLUME	=			312,138	gallons
5.9 Calc			blan sheet	C-18)	312,138	gallons
5.9 Calc	ulate Dewatering Basin Capacity Dewatering Basin Dimensions (fro Length	m civil p 20	ft	C-18)	312,138	gallons
5.9 Calc	ulate Dewatering Basin Capacity Dewatering Basin Dimensions (fro Length Width	m civil p 20 15	ft ft	C-18)	312,138	gallons
5.9 Calc	ulate Dewatering Basin Capacity Dewatering Basin Dimensions (fro Length	m civil p 20 15	ft	C-18)	312,138	gallons
5.9 Calc	ulate Dewatering Basin Capacity Dewatering Basin Dimensions (fro Length Width Depth	m civil p 20 15 8	ft ft ft	C-18)	312,138	gallons
5.9 Calc	ulate Dewatering Basin Capacity Dewatering Basin Dimensions (fro Length Width	m civil p 20 15	ft ft ft	C-18)	312,138	gallons
5.9 Calc	ulate Dewatering Basin Capacity Dewatering Basin Dimensions (fro Length Width Depth	m civil p 20 15 8	ft ft ft CF	C-18)	312,138	gallons
5.9 Calc	ulate Dewatering Basin Capacity Dewatering Basin Dimensions (fro Length Width Depth Dewatering Basin Volume	m civil p 20 15 8 2400 300 0.0052	ft ft CF SF ft/min	from Geotechnical Repo	ort, page 8	
5.9 Calc	ulate Dewatering Basin Capacity Dewatering Basin Dimensions (fro Length Width Depth Dewatering Basin Volume Dewatering Basin Floor Area	m civil p 20 15 8 2400 300 0.0052	ft ft CF SF		ort, page 8	
5.9 Calc	ulate Dewatering Basin Capacity Dewatering Basin Dimensions (fro Length Width Depth Dewatering Basin Volume Dewatering Basin Floor Area	m civil p 20 15 8 2400 300 0.0052 1.56	ft ft CF SF ft/min CF/min CF/day	from Geotechnical Repo	ort, page 8	

Compare to the required dewatering rates for the different areas of construction:

Area	Dewatering Rate
Abutment 1 shafts	4,249 gpd
Abutment 2 shafts	3,837 gpd
Test shaft	5,401 gpd
Waterline trench	11,779 gpd

There is sufficient percolation for each individual area.